• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Kernel Bayes Inference and Infinitely Divisible Distributions

Research Project

Project/Area Number 26870821
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Foundations of mathematics/Applied mathematics
Research InstitutionThe University of Electro-Communications

Principal Investigator

Nishiyama Yu  電気通信大学, 大学院情報理工学研究科, 助教 (60586395)

Project Period (FY) 2014-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsカーネル法 / カーネルベイズ推論 / 無限分解可能分布 / 畳み込み無限分解可能カーネル / 共役カーネル / 畳み込みトリック / 安定分布 / 一般化双曲型分布 / 正定値カーネル / 特性的カーネル / カーネル平均 / カーネルベイズ / 一般化双曲系型分布 / Convolution Trick / セミパラメトリックカーネルベイズ / Levy Khintchine公式
Outline of Final Research Achievements

Kernel Bayes Inference (KBI), which is a Bayesian inference based on kernel methods, has been studied. KBI infers kernel means, which are features of probability distributions in reproducing kernel Hilbert space. In KBI, characteristic kernels play an important role in specifying probability distributions by kernel means. We studied a connection between characteristic kernels and infinitely divisible distributions. We showed that continuous bounded and symmetric density functions of infinitely divisible distributions can be used for characteristic kernels. Within the infinitely divisible distributions, we proposed a convolution trick, which is a generalization of the kernel trick. The convolution trick can be used for developing various kernel algorithms that combine infinitely divisible distributions.

Report

(4 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (21 results)

All 2016 2015 2014 Other

All Int'l Joint Research (3 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results,  Open Access: 2 results,  Acknowledgement Compliant: 2 results) Presentation (9 results) (of which Int'l Joint Research: 3 results) Remarks (6 results)

  • [Int'l Joint Research] ジョージア工科大学(米国)

    • Related Report
      2016 Annual Research Report
  • [Int'l Joint Research] University College London(英国)

    • Related Report
      2015 Research-status Report
  • [Int'l Joint Research] Georgia Institute of Technology(米国)

    • Related Report
      2015 Research-status Report
  • [Journal Article] Characteristic Kernels and Infinitely Divisible Distributions2016

    • Author(s)
      Yu Nishiyama and Kenji Fukumizu
    • Journal Title

      Journal of Machine Learning Research

      Volume: 17 Pages: 1-28

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] The Nonparametric Kernel Bayes Smoother2016

    • Author(s)
      Yu Nishiyama, Amir Hossein Afsharinejad, Shunsuke Naruse, Byron Boots, Le Song
    • Journal Title

      The 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016)

      Volume: - Pages: 547-555

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Filtering with State-Observation Examples via Kernel Monte Carlo Filter2016

    • Author(s)
      Motonobu Kanagawa, Yu Nishiyama, Arthur Gretton, and Kenji Fukumizu
    • Journal Title

      Neural Computation

      Volume: 28 Issue: 2 Pages: 382-444

    • DOI

      10.1162/neco_a_00806

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] The Nonparametric Kernel Bayes Smoother2016

    • Author(s)
      Yu Nishiyama, Amir Hossein Afsharinejad, Shunsuke Naruse, Byron Boots, Le Song
    • Organizer
      The 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016)
    • Place of Presentation
      Cadiz, Spain
    • Year and Date
      2016-05-09
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Nonparametric Kernel Bayes Smoothing on State Space Models2016

    • Author(s)
      西山悠
    • Organizer
      新学術領域研究「スパースモデリングの深化と高次元データ駆動科学の創成」2015年度公開シンポジウム
    • Place of Presentation
      神戸
    • Year and Date
      2016-03-07
    • Related Report
      2015 Research-status Report
  • [Presentation] kNNを用いたカーネルベイズの計算量削減法の検討2015

    • Author(s)
      苗村智行, 都築俊介, 西山悠
    • Organizer
      第18回情報論的学習理論ワークショップ(IBIS2015)
    • Place of Presentation
      筑波大学,茨城
    • Year and Date
      2015-11-26
    • Related Report
      2015 Research-status Report
  • [Presentation] カーネルベイズスムージングとカーネル平均Toolboxの作成2015

    • Author(s)
      西山悠
    • Organizer
      第25回日本神経回路学会全国大会(JNNS 2015)
    • Place of Presentation
      電気通信大学, 東京
    • Year and Date
      2015-09-04
    • Related Report
      2015 Research-status Report
  • [Presentation] Nonparametric Smoothing on State Space Models with Kernel Mean Embeddings2015

    • Author(s)
      Yu Nishiyama, Amir Hossein Afsharinejad, Shunsuke Naruse, Byron Boots, Le Song
    • Organizer
      STM2015 & CSM2015
    • Place of Presentation
      The Institute of Statistical Mathematics, Tokyo
    • Year and Date
      2015-07-15
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] Nonparametric Smoothing on State Space Models with Kernel Mean Embeddings2015

    • Author(s)
      Yu Nishiyama, Amir Hossein Afsharinejad, Shunsuke Naruse, Byron Boots, Le Song
    • Organizer
      1st Symposium on Intelligent Systems in Science and Industry (SISSI)
    • Place of Presentation
      Max Planck Institute, Tuebingen
    • Year and Date
      2015-07-12
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] Model-based Kernel Sum Rule with Applications to State Space Models2014

    • Author(s)
      Yu Nishiyama, Motonobu Kanagawa, Arthur Gretton, Kenji Fukumizu
    • Organizer
      The Neural Information Processing Systems (NIPS) Workshop: ABC in Montreal
    • Place of Presentation
      Canada
    • Year and Date
      2014-12-12
    • Related Report
      2014 Research-status Report
  • [Presentation] カーネル法と確率分布の無限分解可能性2014

    • Author(s)
      西山悠
    • Organizer
      日本応用数理学会 2014年度年会
    • Place of Presentation
      政策研究大学院大学
    • Year and Date
      2014-09-05
    • Related Report
      2014 Research-status Report
  • [Presentation] Monte Carlo Filtering using Kernel Embedding of Distributions2014

    • Author(s)
      Motonobu Kanagawa, Yu Nishiyama, Arthur Gretton, and Kenji Fukumizu
    • Organizer
      28th AAAI Conference on Artificial Intelligence
    • Place of Presentation
      Canada
    • Year and Date
      2014-07-27 – 2014-07-31
    • Related Report
      2014 Research-status Report
  • [Remarks] Yu Nishiyama

    • URL

      https://sites.google.com/site/ynishiyam/research

    • Related Report
      2016 Annual Research Report
  • [Remarks]

    • URL

      https://sites.google.com/site/ynishiyam/home

    • Related Report
      2015 Research-status Report
  • [Remarks]

    • URL

      http://www.is.uec.ac.jp/staff/list/ss/nishiyama-yu.html

    • Related Report
      2015 Research-status Report
  • [Remarks] GoogleSites

    • URL

      https://sites.google.com/site/ynishiyam/home

    • Related Report
      2014 Research-status Report
  • [Remarks] 電気通信大学大学院情報システム学研究科

    • URL

      http://www.is.uec.ac.jp/staff/list/ss/nishiyama-yu.html

    • Related Report
      2014 Research-status Report
  • [Remarks] ResearchMap

    • URL

      http://researchmap.jp/YuNishiyama/

    • Related Report
      2014 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2022-02-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi