2020 Fiscal Year Final Research Report
Development of mixed anion compounds that exhibit new properties and functions
Project Area | Synthesis of Mixed Anion Compounds toward Novel Functionalities |
Project/Area Number |
16H06441
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
長谷川 哲也 東京大学, 大学院理学系研究科(理学部), 教授 (10189532)
田部 勢津久 京都大学, 人間・環境学研究科, 教授 (20222119)
松石 聡 東京工業大学, 元素戦略研究センター, 准教授 (30452006)
内本 喜晴 京都大学, 人間・環境学研究科, 教授 (50193909)
森 孝雄 国立研究開発法人物質・材料研究機構, 機能性材料研究拠点, グループリーダー (90354430)
牛山 浩 東京大学, 大学院工学系研究科(工学部), 准教授 (40302814)
|
Project Period (FY) |
2016-06-30 – 2021-03-31
|
Keywords | 光触媒 / 二次電池 / 蛍光体 / 磁性体 / 熱電材料 |
Outline of Final Research Achievements |
We have attempted to create innovative functions unique to mixed anion compounds, targeting applications in photocatalysts and photoelectrodes, secondary battery components, phosphors, and electronic materials. In the study of energy-conversion-type photocatalysts, we found that anion-doped titanium dioxide, layered oxynitrides, and oxyfluorides, which had not been candidates for investigation due to technical issues and preconceptions, could be new visible light responsive photocatalysts. Some of the anion-doped oxides were also shown to be effective as secondary battery materials. For phosphor materials, we have established a guideline for controlling excitation and emission wavelengths that is not limited to material systems through band control by anion coexistence. In the study of electronic materials, unique electronic properties associated with complex anionization were observed in many systems.
|
Free Research Field |
光触媒・材料科学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により、1:1のグループ間共同研究だけでなく、合成(A01)、解析(A02)を含めた3グループ以上による有機的な連携に基づいた共同研究が活発に行われ、複合アニオン化合物の機能創出に関して多くの学術的知見を得ることに成功した。また、実用化に向けた研究が進む光触媒や二次電池材料に関しては、既存のチャンピオン物質に匹敵するものを複数見い出すことができた。
|