2022 Fiscal Year Final Research Report
A new space-time picture constructed by the discovery of supersymmetry
Project Area | New expansion of particle physics of post-Higgs era by LHC revealing the vacuum and space-time structure |
Project/Area Number |
16H06489
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
中本 建志 大学共同利用機関法人高エネルギー加速器研究機構, 超伝導低温工学センター, 教授 (20290851)
浅井 祥仁 東京大学, 大学院理学系研究科(理学部), 教授 (60282505)
田中 純一 東京大学, 素粒子物理国際研究センター, 教授 (80376699)
|
Project Period (FY) |
2016-06-30 – 2021-03-31
|
Keywords | LHC加速器 / ATLAS検出器 / 超対称性粒子探索 / 余剰次元探索 / 高輝度LHCアップグレード / 超伝導双極磁石 / 超伝導線材 |
Outline of Final Research Achievements |
Supersymmetry, Extra Dimensions, below TeV scale are expected from the "naturalness" consistent with the mass of the Higgs boson discovered in the LHC experiments at 2012, also from Dark Matter model, recent results of muon g-2 measurement. We aimed to discover new particles through direct searches of these models. We systematically analyzed the data for various decay modes predicted by the supersymmetric phenomenologies and set strong limits exclusing the particle masses in the range 1-2 TeV. Important conclusions were drawn which revise the guiding principle in the search for supersymmetry. We succeeded in developing a prototype superconducting magnet that meets the specifications for a beam-separating dipole magnet for the final beam-focusing section, which is required for the High-Luminosity LHC, and started series production of the actual accelerator magnets. We also succeeded in developing superconducting wires, which will be a key technology for next-generation accelerators.
|
Free Research Field |
高エネルギー素粒子物理学
|
Academic Significance and Societal Importance of the Research Achievements |
LHC実験 Run2までの超対称性等探索において新粒子は未発見である。候補となる幅広い質量領域を棄却することにより,標準模型を超える物理がより重い領域,または探索に技術的困難が伴う領域に存在するであろうことが示唆された。素粒子物理学に現れる「自然さ」という探索の指導原理を覆す結果となり,Run3以降,次世代の研究の方向性を強く示すとともに,発展が必要となる解析技術が明らかとなった。加速器開発では,実証機の成功を基に本格的な実機生産を開始できたため,高輝度LHCの実現に向けて大きく前進した。また次世代加速器の基礎開発に大きな進展があり,次世代エネルギーフロンティア実験への礎が築かれた。
|