• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Statistical physics and energetics for autonomous motion and functional design in active molecular engines

Planned Research

  • PDF
Project AreaMolecular Engine: Design of Autonomous Functions through Energy Conversion
Project/Area Number 18H05427
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Complex systems
Research InstitutionKyushu University

Principal Investigator

Maeda Yusuke  九州大学, 理学研究院, 准教授 (30557210)

Co-Investigator(Kenkyū-buntansha) 鳥谷部 祥一  東北大学, 工学研究科, 教授 (40453675)
Project Period (FY) 2018-06-29 – 2023-03-31
Keywords非平衡物理学 / 分子モーター / アクティブマター / バクテリア / エネルギー論 / ゆらぎと応答 / 秩序形成
Outline of Final Research Achievements

We have investigated the non-equilibrium dynamics of molecular engines, such as molecular motor proteins, spanning from single-molecule level to collective group level. We have found the underlying mechanism by which molecular motors govern positional symmetry breaking within a cell-sized space, enabling adhesion-independent migration driven by frictional force with the external environment. Moreover, at single molecule level, we have elucidated the strategy employed by F1-ATPase, a rotary molecular motor renowned as an intracellular energy factory, as it mitigates inefficient energy consumption through a rectifying ratchet system. This rectification mechanism not only achieves exceptional performance but also diminishes energetic cost associated with autonomous control. These findings have the potential to unravel design principles governing the development of novel molecular engines.

Free Research Field

生物物理学

Academic Significance and Societal Importance of the Research Achievements

アクティブマターの群れ運動の制御や人工細胞の自律的運動の理解を通じ、分子の群れを操る基本的なルールが明らかになったことで、生体分子モーターの化学エネルギーで動作する革新的デバイスの開発につながるものと期待できる。さらに、一分子レベルにおいても、回転分子モータータンパク質が無駄なエネルギー消費を避ける機構を有することを初めて明らかにした。この結果は、生体分子モーターが単にエネルギー変換を効率的に行うだけでなく、エネルギーの漏れを抑えていることを意味する。以上の成果より、一分子から分子集団まで、高いパフォーマンスと優れたエネルギー変換効率を示す人工発動分子の設計原理が与えられるものと期待できる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi