2023 Fiscal Year Final Research Report
Control and functionality of QLCs
Project Area | Physical Properties of Quantum Liquid Crystals |
Project/Area Number |
19H05826
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | The University of Tokyo (2020-2023) Osaka University (2019) |
Principal Investigator |
Kobayashi Kensuke 東京大学, 大学院理学系研究科(理学部), 教授 (10302803)
|
Co-Investigator(Kenkyū-buntansha) |
戸田 泰則 北海道大学, 工学研究院, 教授 (00313106)
戸川 欣彦 大阪公立大学, 大学院工学研究科, 教授 (00415241)
石坂 香子 東京大学, 大学院工学系研究科(工学部), 教授 (20376651)
岡崎 浩三 東京大学, 物性研究所, 准教授 (40372528)
有馬 孝尚 東京大学, 大学院新領域創成科学研究科, 教授 (90232066)
|
Project Period (FY) |
2019-06-28 – 2024-03-31
|
Keywords | 量子液晶 / 電子状態 / 素励起 / ナノサイエンス / 超高速光技術 |
Outline of Final Research Achievements |
We have conducted experimental studies on "quantum liquid crystals (QLC)," a group of materials with fluidic and anisotropic electronic states. QLCs are characterized by their self-organized electronic states and fast giant response to an external field. We have revealed their unique magnetic structures using synchrotron radiation and neutrons. We have also successfully developed real-space observation techniques such as ultrafast time-resolved transmission electron microscope and quantum spin microscope. We have also elucidated the high-frequency dynamics of spin-based liquid crystal structures. Furthermore, we developed optical experimental techniques such as time-resolved angle-resolved photoemission spectroscopy using higher-order harmonic lasers and topological light waves to investigate electronic states. The above achievements will directly lead to the elucidation of the peculiarities of QLCs and the development of their functionalities.
|
Free Research Field |
mesoscopic physics
|
Academic Significance and Societal Importance of the Research Achievements |
特色ある物質を開発し、その性質を利用した技術を生み出すことは、物質科学の大切な使命の一つです。本研究では、量子液晶と呼ばれる物質の性質を解明する研究を行うとともに、新技術の開発を行い、液晶的な特徴を持つ磁気構造の形やその振る舞いを明らかにしました。特にスピン液晶物質を用いて、サブテラヘルツ帯域で動作する高周波磁性材料として次世代通信システムの開発に貢献が期待される成果を創出しました。
|