• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Fast solution for ultra-large scale systems as a basis of computational materials science

Planned Research

  • PDF
Project AreaMaterials Design through Computics: Complex Correlation and Non-equilibrium Dynamics
Project/Area Number 22104004
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionNagoya University

Principal Investigator

ZHANG Shao-Liang  名古屋大学, 工学(系)研究科(研究院), 教授 (20252273)

Co-Investigator(Kenkyū-buntansha) ABE Kuniyoshi  岐阜聖徳学園大学, 経済情報学部, 教授 (10311086)
YAMAMOTO Yusaku  電気通信大学, 情報理工学研究科, 教授 (20362288)
SOGABE Tomohiro  愛知県立大学, 情報科学部, 准教授 (30420368)
IMAHORI Shinji  名古屋大学, 大学院工学研究科, 准教授 (90396789)
MIYATA Takahumi  名古屋大学, 大学院工学研究科, 助教 (90581645)
Co-Investigator(Renkei-kenkyūsha) SUGIHARA Masaaki  青山学院大学, 理工学部, 教授 (80154483)
Project Period (FY) 2010-04-01 – 2015-03-31
Keywords計算物理 / 数理物理 / 数理工学 / シミュレーション工学 / 応用数学
Outline of Final Research Achievements

Finding novel complex correlation phenomena and clarifying the non-equilibrium dynamics are of prime importance in the field of materials design. This research group tackles the challenging problems from the viewpoints of numerical linear algebra, optimization and high-performance computing. The major purpose of the researches is to develop robust and efficient numerical algorithms for solving large linear systems and eigenvalue problems in order to shed light on a breakthrough toward the challenging problems. Some of numrical algrotihms for solving linear systems we developed are as follows: the shifted COCR method for solving shifted complex symmetric linear systems; the look back GMRES(m) method for nonsymmetric linear systems; a variand of the IDR(s) method for nonsymmetric linear systems. Some of numrical algrotihms for solving eigenvalue problems we developed are as follows: the Arnoldi(M,W,G) method; an extension of the SS method;

Free Research Field

数値解析学

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi