2016 Fiscal Year Final Research Report
Exploring the Limits of Computation in the Scenario of Constrained Work Space
Project Area | A multifaceted approach toward understanding the limitations of computation |
Project/Area Number |
24106004
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Japan Advanced Institute of Science and Technology |
Principal Investigator |
Asano Tetsuo 北陸先端科学技術大学院大学, 学長 (90113133)
|
Co-Investigator(Kenkyū-buntansha) |
上原 隆平 北陸先端科学技術大学院大学, 情報科学研究科, 教授 (00256471)
垂井 淳 電気通信大学, 情報理工学(系)研究科, 准教授 (00260539)
小野 廣隆 九州大学, 経済学研究科(研究院), 准教授 (00346826)
清見 礼 横浜市立大学, 総合科学部, 准教授 (30447685)
大舘 陽太 北陸先端科学技術大学院大学, 情報科学研究科, 助教 (80610196)
|
Research Collaborator |
Guenter Rote Freie Universität Berlin, Institut für Informatik, Professor
Wolfgang Mulzer Freie Universität Berlin, Institut für Informatik, Professor
Ovidiu Daescu University of Texas at Dallas, Department of Computer Science, Professor
|
Project Period (FY) |
2012-06-28 – 2017-03-31
|
Keywords | アルゴリズム / 計算量 / 計算幾何学 / グラフアルゴリズム / 作業領域 |
Outline of Final Research Achievements |
In this research we have developed powerful techniques for analysis toward establishment of nontrivial lower and upper bounds on the constrained work space. The most fundamental problem is to seek for each entry in a given array of real numbers one of nearest greater values. Using linear size of work space we can design a linear time algorithm for solving the problem. Our problem is whether we can solve the problem in an efficient way using less work space. In this research we showed that we have an efficient algorithm using only constant amount of work space. We also had results on time and space tradeoffs on the problem. We obtained other many results in basic problems in computational geometry and graph theory.
|
Free Research Field |
計算幾何学
|