• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Deepening analysis methods for limits of computation through integration with optimization techniques

Planned Research

  • PDF
Project AreaA multifaceted approach toward understanding the limitations of computation
Project/Area Number 24106005
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionKwansei Gakuin University (2015-2016)
Kyoto University (2012-2014)

Principal Investigator

Katoh Naoki  関西学院大学, 理工学部, 教授 (40145826)

Co-Investigator(Kenkyū-buntansha) 岩田 覚  東京大学, 大学院情報処理工学系研究科, 教授 (00263161)
岡本 吉央  電気通信大学, 大学院情報理工学研究科, 准教授 (00402660)
神山 直之  九州大学, マス・フォア・インダストリ研究所, 准教授 (10548134)
来嶋 秀治  九州大学, 大学院システム情報科学研究院, 准教授 (70452307)
Project Period (FY) 2012-06-28 – 2017-03-31
Keywords最適化理論 / 拡張定式化 / 疎性マトロイド / マトロイド・パリティ問題 / 計算限界分析 / #P困難 / 体積計算
Outline of Final Research Achievements

In this project, we obtained the following results.
1. On extended formulations that have been extensively studied recently, a compact representation is provided for sparsity matroids that play important roles both in theory and in practice. 2. The first polynomial-time algorithm is developed for the weighted linear matroid parity problem. 3. A novel reduction method (a hardness proof method) is developed among problems for which brute-force searches cannot be essentially surpassed, resulting in a new standard for the field of exponential-time computation. 4. A polynomial time deterministic approximation algorithm is presented to compute the volume of a 0-1 knapsack polytope which is known to be #P-hard.

Free Research Field

組合せ最適化

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi