• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1993 Fiscal Year Final Research Report Summary

MATHEMATICAL PHYSICS,TOPOLOGY AND RELATED ALGEBRAIC STRUCTURE

Research Project

Project/Area Number 03640073
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 代数学・幾何学
Research InstitutionUNIVERSITY OF TOKYO (1992-1993)
Kyushu University (1991)

Principal Investigator

KOHNO Toshitake  UNIV.OF TOKYO,ASSOCIATE PROFESSOR, 大学院・数理科学研究科, 助教授 (80144111)

Co-Investigator(Kenkyū-buntansha) KIMURA Hironobu  UNIV.OF TOKYO,ASSOCIATE PROFESSOR, 大学院・数理科学研究科, 助教授 (40161575)
NOUMI Masatoshi  UNIV.OF TOKYO,ASSOCIATE PROFESSOR, 大学院・数理科学研究科, 助教授 (80164672)
KATSURA Toshiyuki  UNIV.OF TOKYO,PROFESSOR, 大学院・数理科学研究科, 教授 (40108444)
Project Period (FY) 1991 – 1993
KeywordsConformal field theory / braid group / Chern-Simons theory / 3-manifold / Witten invariant / Vassiliev invariants / Moduli space / Quantum groups
Research Abstract

1.Construction of 3-manifold invariants derived from conformal field theory and its applications
Based on Chern-Simons gauge theory, Witten proposed topological invariants of 3-manifolds. Several works have been done afterwards from geometric or combinatorial viewpoints. We constructed 3-manifold invariants based on representations of mapping class groups appearing in conformal field theory and Heegaard splitting of 3-manifolds.
As an application, using the unitarity of the monodromy of conformal field theory, we obtained lower estimates for classical invariants, such as Heegaard genus and tunnel numbers of knots etc. Investigating the symmetry derived from Dynkin diagram automorphisms, we refined Witten invariant and established the level-rank duality.
2.Graph complex and differential forms on knot space
The object of this research is differential forms on the space of all knots, which is an infinite dimensional space. We constructed a morphism from the graph complex to the de Rham complex on the knot space. This might be considered to be a generalization of the bar complex for the loop space. Especially, as the zero dimensional cohomology of the graph complex, the Vassiliev invariants can be represented by integrals appearing in Chern-Simons perturbation theory.
Applying the de Rham homotopy theory to the pure braid group, we showed that the filtration derived from the Vassiliev invariants for pure braids coinsides with the lower central series. It turns out that the Vassiliev invariants are strong enough to distinguish any pure braid.

  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] T.Kohno: "Topological invariants for 3-manibolds using representations of mapping classgroups I" Topology. 31-2. 203-230 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kohno: "Topological quantum field theory" 岩波数学. 44-1. 29-43 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kohno: "Three-manibold invariants derived from conformal field theory" International J.of Modern Physics. 6. 1795-1805 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Noumi and K.Minachi: "Askey-Wilson polynomials" Lect.Notes in Math.Springer. 1510. 98-103 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Noumi and K.Minachi: "Spherical functions on a fanicy of quantum 3-splieies" Compositio Malb.83. 19-42 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kimura and Y.Haraoka: "Contiguity relations of the generalged confluent hypergeometric functinr" Proc.Japan Acad.69. 105-110 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kohno: "Topological invariants for 3-manifolds using representations of mapping class groups I" Toplogy. 31-2. 203-230 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kohno (with T.Takata): "Symmetry of Witten's 3-manifold invariants for sl (n, C)" Journal of Knot Theory and Its Ramifications. 2-2. 149-169 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kohno: "Topological invariants for 3-manifolds using representations of mapping class groups II : Estimating tunnel number of knots." Contemp.Math.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kimura (with Y.Hraoka and K.Takano): "The generalized confluent hypergeometric functions" Proc.Japan Acad.68. 290-295 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kimura (with Y.Haraoka and K.Takano): "On confluences of of the general hypergeometric systems" Proc.Japan Acad.69. 99-104 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kimura (with Y.Haraoka and K.Takano): "On contiguity relations of the confluent hypergeometric systems" Proc.Japan Acad.70. 47-49 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kimura (with Y.Haraoka): "Contiguity relations of the generalized confluent hypergeometric functions" Proc.Japan Acad.69. 105-110 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Noumi (with K.Mimachi): "Spherical functions on a family of quantum 3-spheres" Compositio Math.83. 19-42 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Noumi (with K.Mimachi): "Askey-Wilson polynomials as spherical functions on SU_q(2)" in Quantum Groups, (P.P.Kulish ed.), Proceedings of Workshops held in the Euler International Mathematical Institute, Leningrad, Fall 1990, Lecture Notes in Math.Vol.1510, Springer-Verlag. 98-103 (1992)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi