• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1993 Fiscal Year Final Research Report Summary

Analytic transformations of complex manifolds

Research Project

Project/Area Number 04640154
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

UEDA Tetsuo  Kyoto Univ.Faculty of Integrated Human Studies, AP., 総合人間学部, 助教授 (10127053)

Co-Investigator(Kenkyū-buntansha) MORIMOTO Yoshinori  Kyoto Univ., Graduate School of Human & Environment Studies, Assist.Professor, 人間・環境学研究科, 助教授 (30115646)
USHIKI Shigehiro  Kyoto Univ., Graduate School of Human & Environment Studies, Professor, 人間・環境学研究科, 教授 (10093197)
MIYAMOTO Munemi  Kyoto Univ., Integrated Human Studies, Professor, 総合人間学部, 教授 (00026775)
TAKEUTI Akira  Kyoto Univ., Integrated Human Studies, Professor, 総合人間学部, 教授 (40026761)
AKIBA Tomoharu  Kyoto Univ., Integrated Human Studies, Professor, 総合人間学部, 教授 (60027670)
Project Period (FY) 1992 – 1993
KeywordsComplex dynamics / Fatou set / Critically finite map / Kobayashi hyperbolicity
Research Abstract

We investigeted complex dynamical system defind by holo-morphic maps of a complex projective space onto itself, as a generalization of the iteration theory of rational function of one complex variable.
The Fatou set is defined to be the maximal open set on which the family of the iterates of such a holomorphic map constitute a normal family. This is considered as one of the most fundamental object in the theory. In our study we have proved that the Fatou set os pseudoconvex and hence a Stain open set, and further that follows that, every basin of attraction of an attracting periodic point or that of parabolic periodic point contains a critical point.
We have also given some examples of dynamical systems ori pro-jective planes for which the Fatou set can be concretely described using elliptic functions, and for which the Fatou set is empty.
Further we studied the ralation among the Fatou set, the forward orbit of the set of the critical points and its limit set set. In particular, we stydied the critically finite case, i.e., the case for which the orbit of the the set of the critical points is an algebraic set. For the case of dimension 2, we have given the condi-tion for the Fatou set is empty.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 上田哲生: "Fatou sets in complex dynamics on projective spaces" Journal of the Mathematical Society of Japan. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 上田哲生: "Critical orbits of holomorphic maps on projective spaces" The Journal of Geometric Analysis. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 森本芳則: "Some remarks on hypoelliptic operators which are not micro-hypoelliptic" Publ.RIMS Kyoto Univ.28. 579-586 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 森本芳則: "Estimates for degenarate Schrodinger operators and hypoellipticity for infinitely degenerate elliptic operators" J.Math.Kyoto Univ.32. 333-372 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 森本芳則: "Hypoelliptic operators in R^3 of the form X_1^2+X_2^2" J.Math.Kyoto.Univ.32. 461-484 (1992)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 森本芳則: "Hypoelliptic operators of principal type with infinite degeneracy" Tukuba J.Math. 19(発表予定). (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] UEDA, Tetsuo: "Fatou sets in complex dynamics on projective spaces" J.Math.Soc.Japan. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] UEDA, Tetsuo: "Critical orbits of holomorphic maps on projective spaces" The Journal of Geometric Analysis. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] MORIMOTO,Yoshinori: "Some remarks on hypo-elliptic operators which are not micro-hypoelliptic" Publ.RIMS Kyoto Univ.28. 579-586 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] MORIMOTO,Yoshinori: "Estimates for degenerate Schrodinger operators and hypo-ellipticity for infinitely dege-nerate elliptic operators" J.Math.Kyoto Univ.32. 333-372 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] MORIMOTO,Yoshinori: "Hypoelliptic operators in R^3 of the form X_1^2 + X_2^2" J.Math.Kyoto Univ.32. 461-484 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] MORIMOTO,Yoshinori: "Hypoelliptic operators of principal type with infinite degeneracy" Tukuba J.Math.(to appear). 19 (1994)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1995-03-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi