• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1994 Fiscal Year Final Research Report Summary

Comprehensive study of real analysis and functional analysis

Research Project

Project/Area Number 05302008
Research Category

Grant-in-Aid for Co-operative Research (A)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

HIRAI Takeshi  Kyoto Univ.Fac.Sci.Prof., 理学部, 教授 (70025310)

Co-Investigator(Kenkyū-buntansha) KOMATSU Hikosaburo  Univ.of Tokyo Prof., 大学院・数理科学研究科, 教授 (40011473)
TAKEMOTO Hideo  Miyagi Education Univ.Prof., 教育学部, 教授 (00004408)
MINEMURA Katsuhiro  Japan Womans Univ.Prof., 理学部, 教授 (20060684)
OHARU Shinnosuke  Hiroshima Univ.Prof., 理学部, 教授 (40063721)
MIYACHI Akihiko  Hitotsubashi Univ.Prof., 社会学部, 教授 (60107696)
Project Period (FY) 1993 – 1994
Keywordsreal analysis / functional analysis / function space / representation / operator algebra / function algebra / harmonic analysis / partial differential equation
Research Abstract

Our studies were mainly carried out according to the following five groups : Real Analysis and Commutative Harmonic Analysis, Function Spaces and Operators, Group Representations and Non-commutative Harmonic Analysis, Operator Algebras and Function Algebras, Functional Analytic Studies on Partial Differential Equations. We pick up some of the works of our members. In the first group, Morrey Spaces, BMO spaces, Besov spaces and operators on them were studied. A.Miyachi studied the spaces defined by means of sharp max functions, and problems on extension of functions on a domain and those on products of functions. S.Igari et al.studied Banach spaces and Banach algebras.
F.Takeo studied Hausdorff dimension of fractal sets. S.Oharu et al.studied semigroups of non-linear oparators coming from non-linear evolution equations. Concerning this subject, they obtained final results on non-linear perturbations of analytic semigroups, adjoint semigroups etc. In the third group, representation theories of infinite dimensional Lie groups and quantum groups were studied. The works of M.Kashiwara and those of M.Jinbo are remarkable. T.Oshima, T.Kobayashi, H.Yamashita et al.studied representations of semisimple Lie groups and harmonic analysis on semisimple symmetric spaces. T.Hirai studied the construction of irreducible unitary representations of infinite discrete groups and the decomposition of their regular representations, and further Howe type duality between the infinite symmetric group and groups of diffeomorphisms on manifolds. Representations of Lie super-algebras were studied by K.Nishiyama et al.
For partial differential equations, construction and expression of their solutions were studied by T.Kawai et al.H.Komatsu showde that his abstract Laplace transform can be applied to get rapidly the classical expression of the solutions of some explicit differential equations.

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] T.Hirai: "Representations of deffeomorphism groups and the infinite symmetric groups21GC01:Noncompact Lie Groups some of Their Applications" 225-237 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Miyachi: "Extension theorems for the function spaces of Devore and Sharpley" Math.Japonica. 38. 1033-1049 (1993)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nakazi: "Invertible Toeplitz operators and uniform algebras" Acta Sci.Mathematica. 59. 173-185 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Oharu: "Nonlinear evolution operators associated with nonlinear degenerate parabolic eguations" Advances in Math.Sci.and Applications. 5. (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Naito: "Kazhudan-Lusztig conjecture for generalized Kac-Moody algebras,II" J.Algebras. 167. 778-802 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kishimoto: "Super-derivations" Commun.Math.Physics. 159. 15-27 (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Komatsu: "ベクトル解析と多様体I" 岩波書店, 134pp. (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Masuda: "関数解析" 裳華房, 184pp. (1994)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hirai: "Representations of diffeomorphism groups and the infinite symmetric group" Non-compact Lie groups and some of their appl.225-237 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Miyachi: "Extension theorems for the function spaces of DeVore and Sharpley" Math.Japonica. 38. 1033-1049 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Nakazi: "Invertible Toeplitz operators and uniform algebras" Acta Sci.Math.59. 173-185 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Oharu: "Nonlinear evolution operators associated with nonlinear degenerate parabolic equations" Advances in Math.Sci.and Appl.5. (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Naito: "Kashudan-Lusztig conjecture for generalized Kac-Moody algebras" J.Algebra. 167. 778-802 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Yamashita: "Associated varieties and Gelfand-Kirillov dimensions for the discrete series of a semisimple Lie group" Proc.of Japan Academy. 70. 50-55 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Yamashita: "Criteria for the finiteness of restriction of U(g)-modules to subalgebras and applications to Harish-Chandra modules : A study in relation to the associated varieties" J.Functional Analysis. 121. 296-329 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Kishimoto: "Super-derivations" Communications Math.Physics. 159. 15-27 (1994)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1996-04-15  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi