• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1996 Fiscal Year Final Research Report Summary

Research on geometric invariants and moduli spaces

Research Project

Project/Area Number 07454237
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

SAKANE Yusuke  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00089872)

Co-Investigator(Kenkyū-buntansha) KATO Shin  Osaka City University, Faculty of Science, Associate Professor, 理学部, 助教授 (10243354)
KOMATSU Gen  Osaka University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (60108446)
KOISO Norihito  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (70116028)
MABUCHI Toshiki  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80116102)
FUJIKI Akira  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80027383)
Project Period (FY) 1995 – 1996
Keywordsn-end catenoids / semi-stablity / Eells-Sampson's equation / Kahler manifold / moduli space / Einstein metric / Groebner bases / Bergman kernel
Research Abstract

On research for geometric structures, associated geometric invariants and moduli spaces, we obtained following results.
1) On minimal surfaces in 3-dimensional Euclidean spaces, we consider a method to construct n-end catenoids with prescribed flux and give a gneral formula for the construction. Moreover, we studied this general furmula of algeraic forms as maps from certain algeraic varieties to complex projective spaces, and proved an existence theorem for n-end catenoids with prescribed flux.
2) We generalized the classical Steiner symmetrization to surfaces with self-intersections and applied the generalized Steiner symmetrization to several isoperimetric problems.
3) On actions of complex reductive algebraic groups on Kahler manifolds, the notion of (semi-) stablity are inroduced. Then, as an analogy of geometric invariant theory, the existence of geomeric quotient are proved
in the category of Kahler manifolds and the data which defines the notion of (semi-) stablity are parametrized … More by certain equivariant cohomology of a Kahler manifold.
4) We considered a semilinear hyperbolic version of Eells-Sampson's equation with the resistance. When the resistance goes to infinity, we show that the solution of the semilinear equation converges to a solution of the original parabolic Eells-Sampson's equation.
5) We show that a natural quadratic form can be defined on the space of holomorphic vector fields of a compact complex manifold with a fixed Kahler class. Applying this to the case of the first chern class, the periodicity of extremal Kahler vector fields are proved.
6) On L^P-spaces we intriduced the notion of orthogonality and proved an orthogonal decomposition theorem. Further, certain compactness of moduli spaces of such L^P-spaces are proved.
7) A new computer agebraic system are developed to compute Groebner bases of polynomials. Applying this system, we proved the existence of new invariant Einstein metric on flag manifolds.
8) On invariant theory of the Bergman kernel for strictly pseudoconvex domains in C^n, new results are obtained. Less

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] J.-S. Park and Y. Sakane: "Invariant Eiustein metrics on certain homogeneous spaces" to appearin Tokyo J. Math.(1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N. Koiso: "On Singular Perturbation of Semilinear" Calc. Var.,. 4. 89-101 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. Fujiki: "Kahler Quotient and Egnivariant Cohomology" "Moduli of Vector Bundles", ed. by M. Maruyama, Morcel Dekker, New York-Basel-Hongkong. 39-53 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. Futaki and T. Mabuchi: "Bilinear Forms and Extremal Kahler Vector Fields Associated with Kahler Classes" Math. Ann.,. 301. 199-210 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Mabuchi: "Orthogonality in the Geometry of Lp-Spaces" Geometric Complex Analysis ed. by J. Noguchi et al., World. 409-417 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Kato: "Construction of n-end Catenoids with Prescribed Flux" Kodai Math. J.18. 86-98 (1995)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.-S.Park and Y.Sakane: "Invariant Einstein Metrics on Certain Homogeneous Spaces" Tokyo J.Math.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Koiso: "On Singular Perturbation of a Semilinear" Calc.Var.4. 89-101 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Futaki and T.Mabuchi: "Bilinear Forms and Extremal Kahler Vector Fields Associated with Kahler Classes" Math.Ann.301. 199-210 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Kato: "Construction of n-end Catenoids with Prescribed Flux." Kodai Math.J.18. 86-98 (1995)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Fujiki: "Moduli of Vector Bundles", ed.by M.Maruyama, "Kahler Quotient and Equivariant Cohomology". Marcel Dekker, New York-Basel-Hong Kong, 39-53 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Mabuchi: Geometric Complex Analysis, ed.by J.Noguchi et al., "Orthogonality in the Geometry of Lp-Spaces". World Scientific Publishing Co., 409-417 (1996)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-03-09  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi