• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Behavior of Zeta and L-functions and their arithmetic meaning

Research Project

Project/Area Number 09440009
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

MATSUMOTO Kohji  Nagoya Univ., Grad. Sch. Math., Assoc. Prof., 大学院・多元数理科学研究所, 助教授 (60192754)

Co-Investigator(Kenkyū-buntansha) ITO Hiroshi  Nagoya Univ., Grad. Sch. Math., Prof., 大学院・多元数理科学研究所, 教授 (30168372)
TANIGAWA Yoshio  Nagoya Univ., Grad. Sch. Math., Assoc. Prof., 大学院・多元数理科学研究所, 助教授 (50109261)
KITAOKA Yoshiyuki  Nagoya Univ., Grad. Sch. Math., Prof., 大学院・多元数理科学研究所, 教授 (40022686)
KATSURADA Masanori  Keio Univ., Fac. of Eco., Assoc. Prof., 経済学部, 助教授 (90224485)
AKIYAMA Shigeki  Niigata Univ., Fac. of Sci., Assoc. Prof., 理学部, 助教授 (60212445)
Project Period (FY) 1997 – 1999
KeywordsRiemann zeta-function / Dirichlet L-function / Voronoi's formula / Divisor problem / Mean square / Asymptotic expansion / Rankin-Selberg L-function / Universality
Research Abstract

There is a strong analogy between the divisor problem (the evaluation of ΔィイD2aィエD2 (X)) and the evaluation of the remainder term EィイD2σィエD2 (T) in the mean square formula for the Riemann zeta-function ζ (S). The basic tools for the study of them are Voronoi's formula and Atkinson's formula, respectively. The results we have obtained on this topic are :
1. By using Voronoi's and Atkinson's formulas, we obtained the mean square formulas of the differences of ΔィイD2aィエD2 (X), or EィイD2σィエD2 (T), in short intervals. Also we proved similar results for the remainder term in the approximate functional equation for ζ ィイD12ィエD1(S).
2. We have studied the generalization to the cases with characters.
3. We showed the Voronoi-type formula for the Riesz sum of the coefficient of Rankin-Selberg L-functions, and proved their mean square formulas.
4. We developed the method of using Mellin-Barnes type of integrals, and established the usefulness of this method for the study of analytic continuation and asymptotic expansions.
Also, we could prove the joint universality for Lerch zeta-functions, and the universality of L-functions attached to modular forms.

  • Research Products

    (34 results)

All Other

All Publications (34 results)

  • [Publications] T. Hattori, K. Matsumoto: "A limit theorem for Bohr-Jessen's probability measures of the Riemann zeta-function"M. Reine Angew. Math.. 507. 219-232 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K. Matsumoto, Y. Tanigawa: "On the zeros of higher derivatives of Hardy's Z-function"J. Number Theory. 75. 262-278 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. Ivic, K. Matsumoto, Y. Tanigawa: "On Riesz means of the coefficients of the Rankin-Selberg series"Math. Proc. Cambridge Phil. Soc.. 127. 117-131 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Katsurada, K. Matsumoto: "A weighted integral approach to the mean square of Dirichlet L-functions""Number Theory and its Applications", Kluwer. 199-229 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K. Matsumoto: "Recent developments in the mean square theory of the Riemann zeta and other zeta-functions""Number Theory" Hindustan. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. Laurineikas, K. Matsumoto: "A joint universality and the functional independence for Lerch zeta-functions"Nagoya Math. J.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y. Kitaoka: "Finite arithmetic subgroups of GLn VI"Contemp. Math.. 249. 63-71 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Akiyama, Y. Tanigawa: "Calculation of values of L-functions associated to elliptic curves"Math. Comput.. 68. 1201-1231 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] I. Kiuchi, Y. Tanigawa: "The mean value theorem of the Riemann zeta-function in the critical strip for short intervals""Number Theory and its Applications", Kluwer. 231-240 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] I. Kiuchi, Y. Tanigawa: "A mean value theorem of the approximate functional equation of 5(5)^2 for short intervals"J. Ramanujan Math. Soc.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Egami: "On the mean square of Hecke L-functions associated to holomorphic cusp forms""Number Theory and its Applications", Kluwer. 101-110 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] I. Kiuchi: "On the mean value formula for the non-symmetric form of the approximate functional equation of 5^2(5) in the critical strip"Publ. Math. Debrecen. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Amou, M. Katsurada: "Irrationality results for values of generalized Tschakaloff series"J. Number Theory. 77. 155-169 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Katsurada: "Rapidly convergent series representations for *(2n+1) and their x-analogue"Acta Arith.. 90. 79-89 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Kanemitsu, M. Katsurada, M. Yoshimoto: "On the Hurwitz-Lerch zeta-function"Aequationes Math.. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Akiyama: "Self affine tiling and Pisot numeration system""Number Theory and its Applications", Kluwer. 7-17 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Akiyama, J. Thuswaldner: "Topological properties of two-dimensional number systems"J. Th. Nomb. Bordcawx. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Hattori, K. Matsumoto: "A limit theorem for Bohr-Jessen's probability measures of the Riemann zeta-function"J. Reine Angew. Math.. 507. 219-232 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Matsumoto, Y. Tanigawa: "On the zeros of higher derivatives of Hardy's z-function"J. Number Theory. 75. 262-278 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Ivie, K. Matsumoto, Y. Tanigawa: "On Riesz means of the coefficients of the Rankin-Selberg series"Math Proc. Cambridge Phil. Soc.. 127. 117-131 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Katsurada, K. Matsumoto: "A weighted integral approach to the mean square of Dirichlet L-functions""Number Theory and its Applications", Kluwer. 199-229 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Matsumoto: "Recent developments in the mean square theory of the Riemann zeta and other zeta-functions""Number Theory" Hindustan. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Laurincikas, M. Matsumoto: "A joint universality and the functional independence for Lerch zeta-functions"Nagoya Math. J.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Kitaoka: "Finite arithmetic subgroups of GLn VI"Contemp. Math.. 249. 63-71 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Akiyama, Y. Tanigawa: "Calculation of values of L-functions associated to elliptic curves"Math. Comput.. 68. 1201-1231 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I Kiuchi, Y. Tanigawa: "The mean value theorem of the Riemann zeta-function in the critical strip for short intervals""Number Theory and its Applications", Kluwer. 231-240 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I Kiuchi, Y. Tanigawa: "A mean value theorem of the approximate functional equation of ζ(s)ィイD12ィエD1 for short intervals"J. Ramanujan Math. Soc.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Egami: "On the mean square of Hecke L-functions associated to holomorphic cusp forms""Number Theory and its Applications", Kluwer. 101-110 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I. Kiuchi: "On the mean value formula for the non-symmetric form of the approximate functional equation of ζ ィイD12ィエD1 (s) in the critical strip"Publ. Math. Debrecen. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Amou, M. Katsurada: "Irrationality results for values of generalized Tshakaloff series"J. Number Theory. 77. 155-169 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Katsurada: "Rapidly convergent series representations for ζ (2n+1) and their X-analogue"Acta Arith. 90. 79-89 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Kanemitsu, M. Katsurada, M. Yoshimoto: "On the Hurwitz-Lerch zeta-function"Aequationes Math.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Akiyama: "Self affine tiling and Pisot numeration system""Number Theory and its Applications", Kluwer. 7-17 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Akiyama, J. Thuswaldner: "Topological properties of two-dimensional number systems"J. Th. Nomb. Bordeaux. to appear.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi