• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

RESEARCH ON HIGHER SIGNATURES

Research Project

Project/Area Number 09640104
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

ISHII Akira  Kyoto University, Faculty of Engineering, Lecturer, 工学研究科, 講師 (10252420)

Co-Investigator(Kenkyū-buntansha) MATSUZAWA Jun-ichi  Kyoto University, Faculty of Engineering, Lecturer, 工学研究科, 講師 (00212217)
FUKAYA Kenji  Kyoto University, Faculty of Science, Professor, 理学研究科, 教授 (30165261)
KONO Akira  Kyoto University, Faculty of Science, Professor, 理学研究科, 教授 (00093237)
HARADA Masana  Kyoto University, Faculty of Science, Instructor, 理学研究科, 助手 (80181022)
Project Period (FY) 1997 – 2000
KeywordsNovikov Conjecture / discrete group / operator algebra / deformation / singularity / McKay correspondence
Research Abstract

In this project, we developed so-called Novikov Conjecture, a conjecture in differential topology. First, we treated combing groups, as a class of discrete groups. This class, being a big class, includes cases where a segment may be far from being a geodesic. Therefore, we introduced the geometric notion of properness and its class turned out to be very easy to treat. Secondly, as a Fredholm representation corresponding to the E-theory introduced by Connes and Higson, we introduced the notion of asymptotic Lipschitz maps of spaces. Under these preparations, we proved the Novikov Conjecture for torsion-free, proper combing groups.
For a map of discrete metric spaces, we can consider conditions on the metric, such as the Lipschitz condition Putting such conditions on the metric, we defined a map being a fiber structure. By studying fiber structures in the cases of discrete groups, we obtained the following : Let Γ be a fundamental group of almost non positively curved manifold. Then any class in H^* (Γ ; R) is a proper Lipschitz class. In particular, Γ satisfies Novikov conjecture.
We studied versal deformations of reflexive modules on rational double points. We constructed a natural stratification of the deformation space and a desingularization of the closure of a stratum as a moduli space, representing a functor defined over the deformation space as a base. In particular, the closure relation of the classes of reflexive modules coincides with the usual order of dominant weights of the corresponding root system. Moreover, we described the singularities arising from adjacent strata.
Finally, we generalized Ito-Nakamura type results on McKay correspondence to the cases of general quotient surface singularities, as conjectured by Riemenschneider.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Akira Ishii: "Versal deformation of reflexive modules over rational double points"Mathematische Annalen. 317. 239-262 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Akira Kono: "4-manifolds X over BSU (2) and the corresponding homotopy types Map (X, SU (2))"J.Pure Appl.Algebra 151 (2000). 3. 227-237 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kenji Fukaya: "Anti-Self-Dual equation on 4-manifolds with degenerate metric"Geometric Analysis and Functional Analysis. 8. 466-528 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kenji Fukaya: "Arnold conjecture and Gromov-Witten invariant"Topology. 38. 933-1048 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Junichi Matsuzawa: "Blow-ups of P^2 and Root System of type D"J.Math.Kyoto Univ.. 39. 725-761 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kenji Fukaya: "Morse theory and topological field theory"Suugaku Exposition. 10-1. 19-39 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Akira Ishii: "Versal deformation of reflexive modules over rational double points"Mathematische Annalen. 317. 239-262 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Akira Kono and Shuichi Tsukuda: "4-manifolds X over BSU(2) and the corresponding homotopy types Map(X, BSU(2))"J.Pure Appl.Algebra 151. no.3. 227-237 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kenji Fukaya: "Anti-Self-Dual equation on 4-manifolds with degenerate metric"Geometric Analysis and Functional Analysis. 8. 466-528 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kenji Fukaya and Kaoru Ono: "Arnold conjecture and Gromov-Witten invariant"Topology.. 38. 933-1048 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Junichi Matsuzawa and Akiko Omura: "Blow-ups of P^2 and Root System of type D"J.Math.Kyoto Univ.. 39. 725-761 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kenji Fukaya: "Morse theory and topological field theory"Suugaku Exposition. 10-1. 19-39 (1997)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi