• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Compactifications of Riemannian manifolds and points at infinity

Research Project

Project/Area Number 09640107
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka Kyoiku University

Principal Investigator

SUGAHARA Kunio  Osaka Kyoiku U., Faculty of Education, Prof., 教育学部, 教授 (20093255)

Co-Investigator(Kenkyū-buntansha) ITOH Jin-ichi  Kumamoto U., Faculty of Education, Asso.Prof., 教育学部, 助教授 (20193493)
KAWAI Shigeo  Saga U., Faculty of Culture and Education, Prof., 文化教育学部, 教授 (30186043)
MACHIGASHIRA Yoshiroh  Osaka Kyoiku U., Faculty of Education, Lect., 教育学部, 講師 (00253584)
KATAYAMA Yoshikazu  Osaka Kyoiku U., Faculty of Education, Prof., 教育学部, 教授 (10093395)
KOYAMA Akira  Osaka Kyoiku U., Faculty of Education, Prof., 教育学部, 教授 (40116158)
Project Period (FY) 1997 – 1998
KeywordsRiemannian manifold / Alexandrov space / ideal boundary / Busemann function / cut locus
Research Abstract

Comparing various compactifications of Riernannian manifolds, we mainly studied the most natural compactification due to Gromov by means of the distance function induced from the Riemannian metric. He called the set of points added in his compactification an ideal boundary. We determined the structure of the ideal boundary of the following spaces.
1. The compactification of an elliptic paraboloid is a 2-sphere. Its ideal boundary is an interval whose ends are Busemann functions.
2. The compactification of a cone consists of n-flat pieces in 2-plane bounded by two parabolas is an n-gon whose edges are Busemann functions.
3. The compactification of the double of a domain bounded by a paraboloid of revolution is a 3-sphere. Its ideal boundary is an interval whose ends are Busemannfunctions.
Results above suggested that Busemann functions play key role in the ideal boundary. Then we proved that Busernann functions determine the size of the ideal boundary.
The cut locus of a point at infinity should be defined by means of Busemann functions determined by the rays which are gradient flows of the point.

  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] A.Koyama: "Cohomological dimension and acyclic resolutions" to appear in Topology and its Alplications.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Katayama: "The characteristic square of a factor and cocycle conjugacy of discrete group actions on factors" Invent. Math.Vlo.132. 331-380 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Katayama: "Simple C^*-algebras arising from β-expansion of real numbers" Ergod. Th. & Dynam. Sys.Vol.18. 937-962 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Katayama: "On automorphisms of generalized Cuntz algebras" International J. of Math.Vol.9. 493-512 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Machigashira: "The Gaussian curvature of Alexandrov surfaces" J.Math. Soc. Japan. Vol.50, No.4. 859-878 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Q-M.Cheng: "The relation between degree and dilatation of continuous maps" Japan. J.Math.Vol.24, No.1. 183-190 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Takashima: "Random walk tests of reciprocal m-sequences" Monte Carlo Methods and Simulations. Vol.3. 155-166 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Takashima: "Random walk tests of pseudorandom unmber generations by cellular automata" Proceedings of the 3-rd St. Peterburg Workshop on Simulation. 302-305 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Kawai: "On the existence of n-harmonic spheres" to appear in Compositio Mathematica.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Kawai: "p-harmonic maps and convex functions" to appear in Geometriae Dedicata.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J.Itoh: "The dimension of a cut locus on a smooth riemannian manifold" Tohoku Math.J.Vol.50. 571-575 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Koyama: "Cohomological dimension and acyclic resolutions" Topology and its Alplications. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Katayama: "The characteristic square of a factor and cocycle conjugacy of discretegroup actons on factors" Invent.Math.Vol.132. 331-380 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Katayama: "Simple C^*-algebras arising from beta-erpansion of real numbers" Ergod.Th.& Dynam.Sys.Vol.18. 937-962 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Katayama: "On automorphisms of generalized Cuntz algebras" International J.of Math.Vol.9. 493-512 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Machigashira: "The Gaussian curvature of Alerandrov surfaces" J.Math.Soc.Japan. Vol.50. 859-878 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Q-M.Cheng: "The relation between degree and dilatation of continuous maps" Japan.J.Math.Vol.24. 183-190 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Takashima: "Random walk tests of reciprocal m-sequences" Monte Carlo Methods and Simulatins. Vol.3. 155-166 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Takashima: "Random walk tests of pseudorandom unmber generations by cellular automata" Proc.of the 3-rd St.Peterburg Workshop on Simulation. 302-305 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Kawai: "On the existencse of n-harmonic spheres" Compositio Mathematica. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Kawai: "p-harmonic maps and conver functions" Geometriae Dedicata. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] J.Itoh: "The dimension of a cut locus on a smooth riemannian manifold" Tohoku Math.J.Vol.50. 571-575 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi