• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Hopf spaces and higher homotopy

Research Project

Project/Area Number 09640117
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKOCHI UNIVERSITY

Principal Investigator

HEMMI Yutaka  Faculty of Science, Associate Professor, 理学部, 助教授 (70181477)

Co-Investigator(Kenkyū-buntansha) MORISUGI Kaoru  Wakayama University Faculty of Education, Professor, 教育学部, 教授 (00031807)
OSHIMA Hideaki  Ibaraki University Faculty of Science, Professor, 理学部, 教授 (70047372)
SHIMOMURA Katsumi  Faculty of Science, Associate Professor, 理学部, 助教授 (30206247)
UMEHARA Jun-iti  Faculty of Science, Professor, 理学部, 教授 (30036537)
KOBAYASHI Teiichi  Faculty of Science, Professor, 理学部, 教授 (30033806)
Project Period (FY) 1997 – 1998
KeywordsA_N-spaces / A_N-maps / higher homotopy commutativity / mod 3 finite H-spaces / Steenrod operations / mod 5 finite loop spaces / p-regularity / Harper-Zabrodsky operation
Research Abstract

The summary of research results is as follows.
1. We gave an alternative definition of An-spaces and An-maps between An-spaces. To give the alternative definition we used a complex with higher symmetricity than the Stasheff's complex K_n. The complex we used is the convex hull of the orbit of the point (1,2 , ..., n) in the n dimensional Euclid space under the action of the n-th symmetric group. Using this alternative definition makes it possible to give a combinatorial definition of higher homotopy commutativity on An-spaces.
2. We studied the cohomology of mod 3 finite Hopf spaces by using the unstable version of the Harper-Zabrodsky cohomology operation. Our result is the following : Let X be a simply connected mod 3 finite Hopf space with associative Pontryagin product on H_*(X ; Z/3). Then, the cohomology H*(X ; Z/3) is isomorphic as an algebra to the one of the product space of Harper's Hopf spaces, the exceptional Lie group E_8s and odd spheres. This research includes Professor Lin of University of California at San Diego.
3. For the first step to extend the above result to odd primes greater than three, we got a result on the action of the Steenrd algebra on the cohomology of 5 torsion free mod 5 finite loop spaces.
4. We studied mod p finite Ap-spaces with trivial Steenrod action for odd prime p. Our result is as follows : Let X be a simply connected mod p finite Ap-space. Then, X is rho-regular if and only if the action of the Steenrod algebra on H*(#ZX ; Z/p) is trivial.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Y.Hemmi: "An-spaces and primitivity" Mem. Fac. Sei. Kochi Univ.Ser. A(Math.). 18. 81-86 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Hemmi, K.Morisugi and H.Oshima: "Self map sof spaces" J. Math. Soc. Japan.49. 439-453 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi: "Immersions of Iens spaces in complex projective spaces" Mem. Fac. Sei. Kochi Univ.Ser. A(Math.). 20. 57-65 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Shimomura: "The homotopy groups of an L_2-localized type one finite spectrum at the prime 2" Hiroshima Math.J.28. 113-127 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Mimura and H.Oshima: "Self homotopy groups of Hopf spaces with at most three cells" J. Math. Soc. Japan. 51. 71-92 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Morisugi: "Projective elements in K-thoery and self map of ΣCP^∞" J. Math Kyoto Univ.38. 151-165 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Hemmi: "A_N-spaces and primitivity" Mem.Fac.Sci.Kochi Univ.Ser.A (Math.). Vol.18. 81-86 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Hemmi, K.Morisugi, and H.Oshima: "Self maps of spaces" J.Math.Soc.Japan. Vol.49. 439-453 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Kobayashi: "Immersions of lens spaces in complex projective spaces" Mem.Fac.Sci.Kochi Univ.Ser.A (Math.). Vol.20. 57-65 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Shimomura: "The homotopy groups of an L_2-localized type one finite spectrum at the prime 2" Hiroshima Math.J.Vol.28. 113-127 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Mimura and H.Oshima: "Self homotopy groups of Hopf spaces with at most three cells" J.Math.Soc.Japan. Vol.51. 71-92 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Morisugi: "Projective elements in K-thoery and self map of SIGMACP^*" J.Math.Kyoto Univ.Vol.38. 151-165 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi