• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

RIGIDITY OF GROUP ACTIONS

Research Project

Project/Area Number 09640128
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNagoya University (1998)
Keio University (1997)

Principal Investigator

KANAI Masahiko  Nagoya Univ., Grad.School of Math., Professor, 大学院・多元数理科学研究科, 教授 (70183035)

Co-Investigator(Kenkyū-buntansha) MAEDA Yoshiaki  Keio Univ.Dept.of Math., Professor, 理工学部, 教授 (40101076)
TONEGAWA Yoshihiro  Keio Univ.Dept.of Math., Instructor, 理工学部, 助手 (80296748)
TAMURA Yozo  Keio Univ.Dept.of Math., Associate Professor, 理工学部, 助教授 (50171905)
SUZUKI Yuki  Keio Univ.Dept.of Math., Instructor, 理工学部, 助手 (30286645)
ITO Yuji  Keio Univ.Dept.of Math., Professor, 理工学部, 教授 (90112987)
Project Period (FY) 1997 – 1998
Keywordsrigidity of group actions / global analysis on foliated manifolds
Research Abstract

A smooth action of a discrete group GAMMA on a differentiable manifold M is, by definition, a homomorphism of GAMMA into Diff M, the diffeomorphism group of M.One of the main theme in the theory of group actions is to depict the whole space A (GAMMA, Diff M) of smooth actions of GAMMA on M.By rigidity (in a wide sense) is meant a claim which says that the space A(GAMMA, Diff M) is "small".
Invariant Geometric Structures. One of the approaches to the rigidity problem is frying to find a geometric structure that is invariant under a given group action. We found a new example for which this approach works.
Global Analysis on Foliated Manifolds. Rigidity for group actions often amounts to some global-analytic problem on a foliated manifold. We were able to describe the spectrum of the tangential laplacian on a certain foliated manifold.
Infinite-Dimensional Homogeneous Spaces of Diffeomorphism Groups. We studied geometry and topology of such spaces especially bearing an application to rigidity problem in mind.
Also there have been done researches on infinite-dimensional minimal submanifolds in infinite-dimensional spaces (by Maeda) , on the blow-up phenomenon of the Yang-Mills gradient flow (by Maeda) , on hydrodynamic limit of a spin system (by Suzuki) , and on a regularity theorem for a certain free boundary problem (by Tonegawa).

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] M.Kanai: "Rigidity of group actions" Seminaire de Theorie Spectrale et Geometrie,Univ.Grenoble I. 15. (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Suzuki: "Hydrodynamic limit for an infinite spin system on Z" Tokyo Journal of Mathematics. 20. 139-172 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Tonegawa: "On the regularity of a chemical reaction interface" Comm.Partial Differential Equqtions. 23. 1181-1207 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] P.Padilla and Y.Tonegawa: "On the convergence of stable phase transitions" Comm.Pure Appl.Math.51. 551-579 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Maeda,S.Rosenberg and P.Tondeur: "Minimal orbits of metrics" Journal of Geometry and Physics. 23. 319-349 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kozono,Y.Maeda and H.Naito: "A Yang-Mills-Higgs gradient flow on R^3 blowing up at infinity" Proceedings of the Japan Academy,Ser.A,. 74. 71-73 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kanai: "Rigidity of group actions" Seminaire de Theorie Spectrale et Geometrie, Univ.Grenoble I. 15. (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Suzuki: "Hydrodynamic limit for an infinite spin system on Z" Tokyo J.Math.20. 139-172 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Tonegawa: "On the regularity of a chemical reaction interface" Comm.Partial Diff.Eq.23. 1181-1207 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] P.Padilla and Y.Tonegawa: "On the convergence of stable phase transitions" Comm.Pure Appl.Math.51. 551-579 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Maeda, S.Rosenberg and P.Tondeur: "Minimal orbits of metrics" J.Geom.Phys.23. 319-349 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kozono, Y.Maeda and H.Naito: "A Yang-Mills-Higgs gradient flow on R^3 blowing up at infinity" Proc.Japan Acad., Ser.A.74. 71-73 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi