• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Studies on Hardy spaces by real analytic methods

Research Project

Project/Area Number 09640146
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionTOHOKU UNIVERSITY

Principal Investigator

KANEKO Makoto  Graduate School of Information Sciences, Tohoku University, Professor, 大学院・情報科学研究科, 教授 (10007172)

Co-Investigator(Kenkyū-buntansha) OHNO Yoshiki  Graduate School of Information Sciences, Tohoku University, Associate Professor, 大学院・情報科学研究科, 助教授 (80005777)
SUZUKI Yoshiya  Graduate School of Information Sciences, Tohoku University, Professor, 大学院・情報科学研究科, 教授 (30005772)
OKADA Masami  Graduate School of Information Sciences, Tohoku University, Professor, 大学院・情報科学研究科, 教授 (00152314)
ARISAWA Mariko  Graduate School of Information Sciences, Tohoku University, Associate Professor, 大学院・情報科学研究科, 助教授 (50312632)
Project Period (FY) 1997 – 1999
KeywordsHardy space / Fourier multiplier operator / Transference problem / Maximal operator
Research Abstract

The Hardy spaces constructed in an n-dimensional Euclidean space have been studied by many authors since a long time ago as well as those built on n-dimensional torus. In this research we have pointed out that the both of two have very similar constructions through the investigation of the transference problem.
When a bounded function defined on an n-dimensional Euclidean space is given, we have an operator called Fourier multiplier operator which is defined by multiplying the Fourier transform of an object function or a distribution by the bounded function. On the other hand, if we consider the restriction of the given bounded function to the n-dimensional lattice, then we have a Fourier multiplier operator in the frame of Fourier series arguments.
A countable number of bounded functions make a sequence of Fourier multiplier operators in both frames of Fourier transform and Fourier series. Each of them constructs the associated maximal operator. We have succeeded to prove that the continuity of the maximal operator in the frame of Fourier transform argument from a Hardy space to a weak Lebesgue space implies the continuity of the counterpart maximal operator in the setting of Fourier series argument.
Furthermore, we have studied the maximal operator obtained by the family of convoluted functions by an integrable function of a given sequence of bounded functions. We have gained an simple proof of showing that the continuity of the above maximal operator is reduced from the continuity of the maximal operator defined by the sequence of initially given and nonconvoluted bounded functions.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] M.Kaneko: "Notes on trausference of continuity from maximal Fourier multiplier operators on IR^n to those on II^<n >"Interdisciplinary Information Sciences. 4. 97-107 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Ichijo: "Some remarks on Besov spaces and the wavelet de-noising method"Japan J. Ind. Aprl. Math.. 16. 287-305 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kawaguchi: "Saturation problem in approsimation of functions by some operators associated with the generaliged Jackson's operators"Interdisciplinary Information Siences. 5. 125-148 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Ohno: "Some invariant subspaces in L^2_H"Interdisciplinary Information Siences. 2. 131-137 (1996)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Arisawa: "APDE approach to stale-constraint problems in Hilbert spaces"SIAM J. Applied Math. Optimization. 発表予定.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Arisawa: "On eregodic stochastic control"Comm. Partial Diff. Equations. 23. 2187-2217 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Kaneko and E. Sato: "Notes on transference of continuity from maximal Fourier multiplier operators on RィイD1nィエD1 to those on TィイD1nィエD1"Interdisciplinary Information Sciences. 4-1. 97-107 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Ichijo, Y. Ishikawa and M. Okada: "Some remarks on Besov spaces and the wavelet de-noising method"Japan J. Ind. Appl. Math.. 16-2. 287-305 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Kawaguchi and Y. Suzuki: "Saturation problem in approximation of functions by some operators associated with the generalized Jackson's operators"Interdisciplinary Information Sciences. 5-2. 125-148 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Ohno: "Some invariant subspaces in LィイD32(/)HィエD3"Interdisciplinary Information Sciences. 2-2. 131-137 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Arisawa, H. Ishii, and P.-L. Lions: "A PDE approach to state-constraint problems in Hilbert spaces"SIAM J. Applied Math. and Optimizations. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Arisawa and P.-L. Lions: "On ergodic stochastic control"Comm. Partial Differential Equations. 23-11・12. 2187-2217 (1998)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi