• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

Mathematical Analysis of free boundary problems related to a variational problem

Research Project

Project/Area Number 09640170
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionKanazawa University

Principal Investigator

OMATA Seiro  Kanazawa University, Departmnet of Science, Associate Professor, 理学部, 助教授 (20214223)

Co-Investigator(Kenkyū-buntansha) GOTO Shunichi  Kanazawa University, Department of Science, Associate Professor, 理学部, 助教授 (30225651)
TAMURA Hiroshi  Kanazawa University, Department of Science, Associate Professor, 理学部, 助教授 (80188440)
FUJIMOTO Hirotaka  Kanazawa University, Department of Science, Professor, 理学部, 教授 (60023595)
ICHINOSE Takashi  Kanazawa University, Graduate School of Natural Science, Professor, 自然科学研究科, 教授 (20024044)
HAYASIDA Kazuya  Kanazawa University, Graduate School of Natural Science, Professor, 自然科学研究科, 教授 (70023588)
Project Period (FY) 1997 – 1998
KeywordsFree boundary problem / Variational problem / Nonlinear partial differential equations / Numerical Analysis / Minimizing methods / Superconductivity / Liquid crystals
Research Abstract

We mainly investigated a free boundary problem related to a variational problem. Since our problem has a feature (hat the free boundary is a set of singular points of a minimizer and the energy concentrate on it. So, we can cosider that our purpose is on treating the energy concentration phenomena on the singularity of solutions. In this stand point of view, we treated the following type of problems :
(1)Develop Regularity theory of elliptic free boundary problem related to minimizing functional with moving boundary,
(2)Develop a Numerical method via a minimization process,
(3)Develop a method related to solve a hyperbolic free boundary problem.
For problem (1), in 2-dimensional case, we successfully showed regularity of free boundary on some nonlinear case. For (2), we treated the Ginzburg-Landau functional which mainly appear in superconducting phenomema. In this, we developed a method due to discrete Morse semiflow for parabolic and hyperbolic problems. For (3), we constucted a strong solutions related to hyperbolic free boundary problems under some compatibility conditions. Moreover we developed a software to solve this with good accuracy. We summed up these results into 7 papers (appeared or in press) and I preprint (submitted).

  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] S.Omata: "A Numerical Method based on the discrete Morse semiflow related to parabolic and hyperbolic equations" Nonlinear Analysis. 30 No.4. 2181-2187 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kikuchi S.Omata: "A free boundary problem for a one dimensional hyperbolic equation" Adv.Math.Sci.Appl.10 No.1to appear.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Omata Y.Yamaura: "A free boundary problem for quasilinear elliptic equations part II:C^<1.α>-reqularity of free boundary" Funkcialaj Ekvacioj. 42 No.1to appear.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nagasawa K.Nakane S.Omata: "Hyperbolic Ginzburg Landau system" Nonliear Analysis. to appear.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Omata T.Okamura K.Nakane: "Numerical analysis for the discrete Morse semiflow related to the Ginzburg Landau funcional" Nonlinear Analysis. to appear.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nagasawa K.Nakane S.Omata: "Numerical computations for a hyperbolic Ginzburg-Landau system" in proc.Eighth Int.Col.on Differential Equations,Plovdiv. 18-23 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Imai,S.Omata,K.Nakane K.Kikuchi: "Numerical analysis of a free boundary problem governed by a hyperbolic equation" in Proc.Third China-Japan Seminar on Numerical Mathematics,Science Press Beijing New York. 214-221 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Omata: "A Numerical Method based on the discrete Morse semiflow related to parabolic and hyperbolic equations" Nonlinear Analysis. Vol.30, No.4. 2181-2187 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Nagasawa, K.Nakane and S.Omata: "Numerical computations for a hyperbolic Ginzburg-Landau system" in Proceedings of the Eighth International Colloquium on Differential Equations Plovdiv, Bulgaria, August. 18-23 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Imai, S.Omata, K,Nakane and K.Kikuchi: "Numerical analysis of a free boundary problem governed by a hyperbolic equation" in Proc.Third China-Japan Seminar on Numerical Mathematics, edited by Zhong-Ci Shi and Masataka Mori, Science Press Beijing New York. 214-221 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Omata, T.Okamura and k.Nakane: "Numerical analysis for the discrete Morse semiflow related to the Ginzburg Landau functional ;" Nonlinear Analysis. (to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kikuchi and S.Omata: "A free boundary problem for a one dimensional hyperbolic equation" Adv.Math.Sci.Appl.Vol.10 No.1(to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Omata and Y.Yamaura: "A tree boundary problem for quasilinear elliptic equations part II : C^<1.a>-regularity of free boundary" Funkcialaj Ekvacioj. Vol.42.No.1.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T,Nagasawa, K.Nakane and S.Omata: "Hyperbolic Ginzburg Landau system" Nonlinear Analysis. (to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Imai, K.Kikuchi, K.Nakane, S.Omata and T.Tachikawa: "Numerical analysis of a free boundary problem for one dimensional hyperbolic equation" (preprint.).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi