• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1998 Fiscal Year Final Research Report Summary

SCHWARZ NORMS IN OPERATOR ALGEBRAS AND CONTRACTIONS, AND ITS APPLICATIONS TO DIFFERENTIAL OPERATORS

Research Project

Project/Area Number 09640200
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionFUKUOKA UNIVERSITY OF EDUCATION

Principal Investigator

UCHIYAMA Mitsuru  FUKUOKA UNIVERSITY OF EDUCATION,FACULTY OF EDU,PROFESSOR, 教育学部, 教授 (60112273)

Co-Investigator(Kenkyū-buntansha) HARA Takuya  FUKUOKA UNIVERSITY OF EDUCATION,FACULTY OF EDU,ASSOCIATE PROFESSOR, 教育学部, 助教授 (50263984)
FUKUTAKE Takayoshi  FUKUOKA UNIVERSITY OF EDUCATION,FACULTY OF EDU,PROFESSOR, 教育学部, 教授 (60036887)
Project Period (FY) 1997 – 1998
KeywordsOperator monotone function / Lowner-Heinz inequality / positive definite operator / norm / operator / matrix / determinant / Korovkin theory
Research Abstract

The research results which we have gotten with a support of GRANT TN AID for SEIENTIFIC RESEARCH (C) are 5 published papers, 3 accepted papers and I submitted paper. The content of them are as follows :
1. For non-negative operators (or matrices) A, B, and for an operator nonotone function f, we had
llf (A) f (B) ll * f (ROO<>llABll)^2
Especially, for the norms of products of logarithmic funtions we had
lllog (1 A) log (1+ B) ll * log (1+ ROO<>llABll)^2
Moreover these are extended to the case of real number powers, so it may be called Minkowski-type inequality. Furthur we investigated and showed that similar Minkowski-type inequality holds for determinants.
Mathematical Inequality and Appl.Vol.1(2)(1998)279-284.
2. Furuta extended the Heinz-Kato Inequality. We extended it as follows :
For operator monotone functions f(t), g(t) >0, T(fg/t)(ITI) is well defined for every T and satisfies T(fg/t)(ITI)x, y ) * (f(ITI)x, x)(g(ITI )y.y) for all vectors x, y
Proc. Amer.Math. Soc.
3. We studied Korovkin theory in C^*-algebras. We found a new inequality whch is very useful to study Korovkin theory. By making use of it, we made clear the the proofs of known theorems and got new Korovkin sets.
Mathinatishe Zeitshrift
4. The function f is called an operator monotone function if for operators A, B
0* f(A) * f(B) whenever 0* A * B
We showed that if f is an operator monotone function and if f is not rational, then f is strongly monotone.

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] M.Uchiyama: "Numerical ranges of elements of involutive Banach algebras" Archiv der Mathematik. 69. 314-318 (1997)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Uchiyama: "Real analytic interpolation functions" Bulletin of Fukuoka Univ.of Education. 47. 9-16 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Uchiyama: "Norms and determinants of products of logarithmic functions" Math. Inequal.and Appl.1. 279-284 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hara,M.Uchiyama,S.Takahashi: "A refinement of Various Mean Inequalities" J.Inequal.Appl.2. 387-395 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Hara: "Monotonicity of the inverses and operators" Bulletin of Fukuoka Univ.of Education. 47. 1-7 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Uchiyama: "Furthur Extensin of Heinz-Kato-Furuta Inequality" Proc.Amer.Math.Soc.(印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Uchiyama: "Korovkin-type theorems for Schwarz maps and operator monotone functions" Math.Z.(印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Uchiyama: "Some exponential operator inequalities" Mathematical Inequalities and Appl.(印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Uchiyama: "Numerical ranges of elements of involutive Banach algebras" Archiv der Mathematik. vol.69. 314-318 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Uchiyama: "Real analytic interpolation functions" Bulletin of Fukuoka Univ.of Education. vol.47. 9-16 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Uchiyama: "Norms and determinants of products of logarithmic functions" Math.Inequal.and Appl.Vol.1. 279-284 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Hara, M.Uchiyama, S.Takahashi: "A refinement of Various Mean Inequalities" J.Inequal.Appl.Vol.2. 387-395 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Hara: "Monotonicity of the inverses and operators" Bulletin of Fukuoka Univ.of Education. Vol.47. 1-7 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Uchiyama: "Furthur Extensin of Heinz-Kato-Furuta Inequality" Proc.Amer.Math.Soc.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Uchiyama: "Korovkin-type theorems for Schwarz maps and operator monotone functions in C^*-algebras" Math.Z.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Uchiyama: "Some exponential operator inequalities" Mathematical Inequalities and Appl.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1999-12-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi