• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Final Research Report Summary

STRUCTURE OF THE MAPPING CLASS GROUP AND GEOMETRY OF THE MODULI SPACE OF RIEMANN SURFACES

Research Project

Project/Area Number 10440016
Research Category

Grant-in-Aid for Scientific Research (B).

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionUniversity of Tokyo

Principal Investigator

MORITA Shigeyuki  University of Tokyo, Professor, 大学院・数理科学研究科, 教授 (70011674)

Co-Investigator(Kenkyū-buntansha) NAKAMURA Hiroaki  Tokyo Metrop.Univ., Ass.Prof., 大学院・理学研究科, 助教授 (60217883)
KAWAZUMI Nariya  University of Tokyo, Ass.Prof., 大学院・数理科学研究科, 助教授 (30214646)
MATSUMOTO Yukio  University of Tokyo, Professor, 大学院・数理科学研究科, 教授 (20011637)
MORIYOSHI Hitoshi  Keio University, Ass.Prof., 理工学部, 助教授 (00239708)
MURAKAMI Jun  Osaka University, Ass.Prof., 大学院・理学研究科, 助教授 (90157751)
Project Period (FY) 1998 – 2000
Keywordsmapping class group / Riemann surface / moduli space / Torelli group / family of Riemann surfaces / monodromy / ジョンソン準同型
Research Abstract

We have investigated the structure of the mapping class group of surfaces as well as the geometry of moduli space of Riemann surfaces mainly from the viewpoints of topology. The main results we obtained are as follows.
(i) The subalgebra of the rational cohomology algebra of the mapping class group of surfaces generated by the Mumford-Morita classes is called the tautological algebra. There have been three approaches to the study of this tautological algebra. The first is based on the twisted Mumford-Morita classes introduced by Kawazumi, the second is in terms of invariants for trivalent graphs and the third is through symplectic representation theory. Summarizing previous results, we found that the above three approaches correspond exactly to each others.
(ii) The theory of secondary characteristic classes of the mapping class group is still a largely unknown area. However, in this research, we proved that these secondary characteristic classes have deep structures that cannot be detected by the nilpotent completion of the Torelli group. It seems highly likely that the solvable or semi-simple structure of the Torelli group will become more and more important in the future.
(iii) We made significant progress in understanding the algebro-geometrical as well as the topological structure of families of Riemann surfaces. In particular, we obtained many results concerning the monodromies of symplectic fibrations.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] MORITA,Shigeyuki: "structure of the mapping class groups of surfaces : a survey and a prospect"Geometry and Topology Monographs. 2. 349-406 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] KAWAZUMI,Nariya(共著): "Riemann-Hurwitz formula for Horita-Mumford classes and surface symmetries"Kodai Math.J.. 21. 372-380 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] KAWAZUMI,Nariya(共著): "The meromorphic solutions of the Bruschi-Calogero Equation"Publ.Res.Inst.Math.Sci.. 36. 85-109 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] NAKAMURA,Hiroaki(共著): "On a subgroup of the Grothendieck-Teichmuller group acting on the tower of protinite Teichmuller modular group"Invent.Math.. 141. 503-560 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] MURAKAMI,Jun(共著): "A three-manifold invariant via the Kontserich integral"Osaka J.Math.. 36. 365-395 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] MORITA,Shigeyuki: "Geometry of Characteristic Classes"American Mathematical Society. 200 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shigeyuki MORITA: "Structure of the mapping class group of surfaces : a survey and a prospect"Proceedings of the KirbyFest, Geometry and Topology Monographs 2, 1999, 349-406. Journal of Differential Geometry. (to appear). (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nariya KAWAZUMI (co-author): "Riemann-Hurwitz formula for Morita-Mumford classes and surface symmetries"Kodai Math.J.. 21. 372-380 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Nariya KAWAZUMI (co-author): "The meromorphic solutions of the Bruschi-Calogero equation"Publ.Res.Inst.Math.Sci.. 36. 85-109 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroaki NAKAMURA (co-author): "On a subgroup of the Grothendieck-Teichmuller group acting on the tower of profinite Teichmuller modular groups"Invent.Math.. 141. 503-560 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Jun MURAKAMI (co-author): "A three-manifold invariant via the Kontsevich integral"Osaka J.Math.. 36. 365-395 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shigeyuki MORITA: "American Mathematical Society"Geometry of Characteristic Classes. 197 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2002-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi