• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Research on homogeneous projective varieties by Lie algebra and algebraic geometry

Research Project

Project/Area Number 10640046
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionFukui University (2000-2001)
Waseda University (1998-1999)

Principal Investigator

YASUKURA Osami  Fukui University, Faculty of Engineering, Associated Professor, 工学部, 助教授 (00191122)

Co-Investigator(Kenkyū-buntansha) MAEDA Hidetoshi  Fukui University, Faculty of Engineering, Associated Professor, 理工学部, 助教授 (10229312)
Project Period (FY) 1998 – 2001
KeywordsPolarized varieties / Vector bundles / Algebraic geometry / Adjoint varieties / Symplectic triple systems / Contact type gradtion / Freudenthal varieties / Secant variety
Research Abstract

H. Maeda gave the following results :
(1) Let E be an ample vector bundle of rank n-2 on a complex projective manifold of dimension n having a section whose zero locus Z is an algebraic surface of Kodaira dimension 1. Then the structure of E is completely determined. This generalizes Sommese and Shepherd-Barron's results on ample divisors.
(2) A classification of the polarized varieties (X, E) consisting of a smooth complex projective variety X of dimension n and an ample vector bundle E of rank n-1 on X such that E has a section whose zero locus is a smooth elliptic curve. And the property of E is investigated when E is very ample having a section whose zero locus equals a hyperelliptic curve of genus non less than two.
(3) In particular, a classification of such (X, E)'s is given when the genus of Z equals two. A classification of the polarized varieties (X, E) consisting of a smooth complex projective variety X of dimension n and an ample vector bundle E of rank n-r on X such that E has a section whose zero locus Z is a smooth r-dimensional submanifold of X when Z contains a bielliptic curve section.
O. Yasukura, in collaboration with H. Kaji (Waseda Univ., Japan and IMPA, Brasil), gave a concrete investigation on the relations among three objects : the adjoint varieties, symplectic triple systems and the gradation of contact type for complex simple Lie algebras. And they described and proved projective geometric properties on Freudenthal varieties in terms of the concept,of symplectic triple systems. In particular, for the adjoint varieties, the orbit decomposition and projective geometric description of the secant varieties are given. For Freudenthal varieties, the linear sectional relation with the corresponding adjoint varieties and an essential proof for the homogeneity are obtained as well as several other proves.

  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] A.Lanteri, H.Maeda: "Elliptic surfaces and ample vector bundles"Pacific Journal of Mathematics. 200-1. 147-157 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Lanteri, H.Maeda: "Special varieties in adjunction theory and ample vector bundles"Mathematical Proceedings of the Cambridge Phil. Soc.. 130-1. 61-75 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Lanteri, H.Maeda: "Ample vector bundles of curve genus one"Canadian Mathematical Bulletin. 42-2. 209-213 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kaji, O.Yasukura: "Tangent loci and certain linear sections of adjoint varieties"Nagoya Mathematical Journal. 158. 63-72 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kaji, O.Yasukura: "Secant varieties of adjoint varieties : orbit decomposition"Journal of Algebra. 227. 26-44 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kaji, M.Ohno, O.Yasukura: "Adjoint varieties and their secant varieties"Indagationes Mathematicae. 10. 45-57 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. lanteri and H. Maeda: "Special varieties in adjunction theory and ample vecto bundles"Pacific Journal of Mathematics. 200-1. 147-157 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Lanteri and H. Maeda: "Ample vector bundles of curve genus one"Mathematical Proceedings of the Cambridge Philosophical Society. 130-1. 61-75 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Kaji and O. Yasukura: "Tangent loci and certain linear sections of adjoint varieties"Canadian Mathematical Bulletin. 42-2. 209-213 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Kaji and O. Yasukura: "Secant varieties of adjoint varieties : orbit decomposition"Nagoya Mathematical Journal. 158. 63-72 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Kaji, M. Ohno and O. Yasukura: "Adjoint varieties and their secant varieties"Journal of Algebra. 227. 26-44 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi