• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Homotopy normality of Lie groups

Research Project

Project/Area Number 10640073
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionAichi University of Education

Principal Investigator

FURUKAWA Yasukuni  Aichi University of Education, Prof., 教育学部, 教授 (90024033)

Co-Investigator(Kenkyū-buntansha) UEMURA Hideaki  Aichi University of Education, Ass. Prof., 教育学部, 助教授 (30203483)
YASUI Tsutomu  Kagoshima University/Faculty of Edu.,Prof., 教育学部, 教授 (60033891)
OHKAWA Tetsusuke  Hiroshima InstofTech.Fac.of Engineering, Ass. Prof., 工学部, 助教授 (60116548)
TAKEUCHI Yoshihiro  Aichi University of Education, Ass. Prof., 教育学部, 助教授 (10206956)
Project Period (FY) 1998 – 2001
KeywordsLie group / Atiyah Todd number / Milnor Kervaire number / Cohomology ring / CW Complex / homotopy category / manifold / embedding problem
Research Abstract

1. Furukawa,Yasukuni.
We considerd the homotopynormality of Lie groups by adopting a weaker definitio than those proposed by McCarty and James. We improved their results, and investigated the case of the exceptional Lie groups. Further,we determined the cohomology maps mod p induced by the inclusion maps of the exceptional Lie groups.
Next,we presented a program of Atiyah-Todd number formula by the computer software Mathematica.and then gave an estimation of the Kervaire-Milnor number.
2. Ohkawa,Tetsusuke.
A result of Handel shows that the homotopy category of unpointed CW-complexes is balanced. The results of Dyer and Roitberg show that the homotopy category of connected pointed CW-complexes is balanced.
Here, we presented a direct and parallel proof of these facts, I.e., we proved that the homotopy category of unpointed CW-complexes and the homotopy category of connected pointed CW-complexes are balanced.
3.Yasui,Tsutomu.
It is known that each map of an n-manifold to real projective space P(2n) is homotopic to an embedding. We proved that this is best possible. The proof uses Stiefel-Whitney classes.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Y.Furukawa: "Program of the Atiyah-Todd number formula"International J. of Applied Mathematics. 5,4. 441-444 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Furukawa: "Estimation of the Kervaire-Milnor number"International J. of Computational and Numerical Analysis and Applications. 1,2. 129-134 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T Matumoto: "On epimor phisms and monomorphisms in the homotopy category of CW complexes"Japanese J. of Mathematics. 26,1. 153-156 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Yasui: "Obstructions for a map to be homotopic/cobordant to an embedding"Analele Univ. Bucuresti, Mate-lnfo.(ルーマニア,ブカレスト大学). 49. 63-68 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Takeuchi: "Pl-least area 2-orbifolds and its applications to 3-orbifolds"Kyushu J. Math.. 55,1. 19-61 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Uemura: "Plane wave decomposition of even-dimensional Brownian local times"J. of Functional Analysis. 173,2. 481-496 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Furukawa,Yasukuni: "Program of the Atiyah Todd.pum.ber formula"Int. J. Appl. Math. 5(4). 441-444 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Furukawa, Yasukuni: "Estimation of the Kervaire-Milnor number"Int. J. of Comput. Numer.Anal.Appl.. 1(2). 129-134 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Matumoto, Takao: "On epimorphisms and monomorphisms in the homotopy category of CW complexes"Japan J. Math.N.S. 26(1). 153-156 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yasui, Tsutomu: "Obstructions for a map to be homotopic/cobordant to an embedding"Analele Univ.Bucuresti,Mate-Info. 49. 63-68 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takeuchi, Yoshihiro: "PL-least area 2-orbifolds and its applications to 3 -orbifolds"Kyushu J.Math. 55(1). 19-61 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Uemura, Hideaki: "Plane wave decomposition of even dimensional Brownian local times"J. Funct. Anal. 173(2). 481-496 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi