• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1999 Fiscal Year Final Research Report Summary

Study on the structure of the group of homeomorphisms

Research Project

Project/Area Number 10640096
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyoto Sangyo University

Principal Investigator

FUKUI Kazuhiro  Kyoto Sangyo University, Faculty of Science, Professor, 理学部, 教授 (30065883)

Co-Investigator(Kenkyū-buntansha) YAMADA Shuji  Kyoto Sangyo University, Faculty of Science, Associate Professor, 理学部, 助教授 (30192404)
USHITAKI Fumihiro  Kyoto Sangyo University, Faculty of Science, Associate Professor, 理学部, 助教授 (30232820)
Project Period (FY) 1998 – 1999
Keywordsfoliated manifold / homeomorphism group / commutator / homology / Lipschitz homeomorphism group / G-manifold / compact. leaf / stable
Research Abstract

1. We considered the group of foliation preserving homeomorphisms of a foliated manifold and computed the first homologies of the groups for condimension one foliations. We showed that if the foliation has no type D components and has only a finite number of type R components, then the group is perfect. Especially the group for the Reeb foliation on the 3-sphere is perfect. Furthermore we showed than if the foliation preserving Lipschitz homeomorphisms of a Lipschitz foliated manifold and computed the first homology of the group of foliation preserving Lipschitz homeomorphisms of a codimension one CィイD11ィエD1-foliated manifold. Then we have a phenomenon different from that in topological case.
2. It is known that the equivariant diffeomorphism group of a principal G-manifold M is perfect. If M has at least two orbit types, then it is not true. We determined the first homology group of the equivariant diffeomorphism group of M when M is a G-manifold with codimension one orbit.
3. We considered the stability of compact leaves. Then we showed that all compact Hausdorff CィイD1rィエD1-foliations of 4-manifolds by hyperbolic surfaces are not stable (1 【less than or equal】 r【less than or equal】∞).

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] 福井 和彦: "Commutators of foliation preserving homeomorphisms for certain compact foliations"Publ. RIMS. Kyoto University. 34-1. 65-73 (1998)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 福井 和彦: "On commutators of foliation preserving homeomorphisms"J. Math, Soc, Japan. 51-1. 227-236 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 阿部 孝順: "On the structure of the group of equivalent diffeomorphisms of G-manifolds with codimension one orbit"Topology.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 阿部 孝順: "On the structure of automorphisms of manifolds"Proc. of International Conference on Geometry, Integrability and Quantization.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中神 恵子: "Mathematica-aided Education of Science-major Students"CD-ROM of the third International Mathematica Symposium, IMS99.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 福井 和彦: "Codimension two compact Hausdorff foliations by hyperbolic surfaces are not stable"Publ. RIMS. Kyoto University.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 山田 修司: "牧野書店"Mathematica で楽しむ数理科学. 224 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Fukui: "Commutators of foliation preserving homeomorphisms for certain compact foliations"Publ.RIMS. Kyoto univ.. 34-1. 65-73 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Fukui and H.Imanishi: "On commutators of foliation preserving homecomorphisms"J.Math. Soc. Japan. 51-1. 227-236 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Abe and K.Fukui: "On the structure of the group of equivariant diffeomorphisms of G-manifolds with codimension one orbit"Topology. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Abe and K.Fukui: "On the structure of automorphisms of manifolds"Proceeding of International Conference on Geometry, Integrability, and Quantization (St. Constantine, Bulgaria). (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Fukui and A.Mori: "Codimension two compact Hausdorff foliations by hyperbolic surfaces are not stable"Publ.RIMS.Kyoto univ.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Nakagami, F.Takeuti, M.Yasugi and F.Ushitaki: "Mathematica-aided Education of Science-major Students, CD-ROM of The third International Mathematica Symposium"ICMS99. Lipschitz homeomor-phisms and its subgroups. (submitted).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Yamada: "Mathematica de tanoshimu suurikagaku(Japanese)"Makino Shoten. 224 (1999)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2001-10-23  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi