• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

On zeta functions of prehomogeneous vector spaces

Research Project

Project/Area Number 11440007
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

SAITO Hiroshi  Kyoto Univ, Graduate School of Human and Environmental studies, Prefssor, 大学院・人間・環境学研究科, 教授 (20025464)

Co-Investigator(Kenkyū-buntansha) MATSUKII Toshihiko  Kyoto Univ, Integrated Human Studies, Ass Professor, 総合人間学部, 助教授 (20157283)
NISHIYAMA Kyo  Kyoto Univ, Integrated Human Studies, Ass Professor, 総合人間学部, 助教授 (70183085)
KATO Shinichi  Kyoto Univ, Integrated Human Studies, Professor, 総合人間学部, 教授 (90114438)
MATSUMOTO Makoto  Kyoto Univ, Integrated Human Studies, Ass Professor, 総合人間学部, 助教授 (70231602)
YAMAUCHI Masatoshi  Kyoto Univ, Integrated Human Studies, Professor, 総合人間学部, 教授 (30022651)
Project Period (FY) 1999 – 2001
Keywordsprehomogeneous vector space / zeta function / explicit formula / Freudenthal quartics / degenerate Whittaker vector / Siegel cusp form / theta correspondence / Shintani function
Research Abstract

The main purpose of this reseach is to study an explicit formula of zeta functions of prehomogeneous vector spaces and its application to automorphic forms. On the zeta functions, we proved their convergence under the rather general assumption that the singular set is a hypersurface and gave an explicit formula for zeta fuctions in terns of local orbital zeta functions under the assumption that the Hasse principle holds for G. As applications of this formula, we calculated the global zeta functions for 4 types of prehomogeneous vector spaces, which have relative invariants of degree 4 called Freudenthal quartics, and determined the relation between the zeta functins of unsaturated prehomegeneous vector spaces and that of the prehomogeneous vector spaces containing that unsaturated prehomogenous vector spaces. By these calculations, we have determined the global zeta functions of 19 types out of 29 types of regular irreducible reduced prehomogeneous vector spaces. These result seem to suggest that the arithmetic nature of global zeta fucntions are determined by the group of the connected components of stabilizer groups of generic points.
We have not made much progress on the application of zeta functions of prehomogeneous vector spaces to auttomorphic forms. But the following results were obtained. Konno proved an twisted analogue of the result by Rodier-Moeglin-Waldspurger on dimensions of degenerate Whittaker vectors and reduced the generic packet conjecture for classical groups to the twisted endoscopy of general linear groups. Ikeda proved a conjecture of Miyawaki for Siegel cusp forms of degree 3 in a generalized form and constructed many Siegel cusp forms. Nishiyama determined the relation of associated varieties in the theata correspondence and showed that in some cases the correspondence of associated cycles can be described clearly. Kato proved the uniqueness of Shintani functions for p-adic groups.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 斎藤 裕: "Global Zeta functions of Frudenthal quartics"(未定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 斎藤 裕: "Convergence of the zeta functions of prehomogeneous vector spaces"(未定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 斎藤 裕: "On zeta functions associated to symmetric matiricesII : Functional equations and special values"(未定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 斎藤 裕: "On "Easy" Zeta Functions"Sugaku Expositions. 14. 191-203 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 斎藤 裕: "Explicit form of the zeta functions of prehomogeneous vector spaces"Math. Ann.. 315. 587-615 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 西山 享: "Multiplicity-free actions and the geometry of nilpotent orpits"Math. Ann.. 318. 777-793 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroshi Saito: "Global Zeta functions of Frudenthal quartics"(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Saito: "Convergence of the zeta functions of prehomegeneous vector spaces"(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Saito: "On zeta functins associated to symmetric matirices II Functional equations and special values"(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Saito: "On "Easy" Zeta Functions"Sugaku Expositions. 14-2. 191-203 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Saito: "Explicit form of the zeta functions of prehomegeneous vector spaces"Math. Ann.. Vol.315. 587-615 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kyo Nihiyama: "Multiplicity-free actions and the geometry of nilpotent orbits"Math.Ann.. Vol.318. 777-793 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi