• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2000 Fiscal Year Annual Research Report

ポアソン多様体および接触多様体にかかわる幾何学の大域的研究

Research Project

Project/Area Number 11640060
Research InstitutionSaitama University

Principal Investigator

水谷 忠良  埼玉大学, 理学部, 教授 (20080492)

Co-Investigator(Kenkyū-buntansha) 長瀬 正義  埼玉大学, 理学部, 教授 (30175509)
阪本 邦夫  埼玉大学, 理学部, 教授 (70089829)
奥村 正文  埼玉大学, 理学部, 教授 (60016053)
福井 敏純  埼玉大学, 理学部, 助教授 (90218892)
竹内 喜佐雄  埼玉大学, 理学部, 教授 (00011560)
Keywordsポアソン多様体 / ヤコビ多様体 / Nambu-Poisson多様体 / Nambu-Jacobi多様体 / 葉層構造 / Fundamental Identity
Research Abstract

研究実績は以下のとおり.
昨年度に引き続き,研究課題に関連してNambu-Poisson多様体およびNambu-Jacobi多様体について調べた.Nambu-Jacobi多様体MはC^∞(M)がq成分のbracket{f_1,…,f_q}をもち次のtundamental identityを満たすものとして定義される.
{f_1,…f_<q-1>,{g_1,…,g_q}}=Σ^^q__<i=1>{g_1,…,{f_1,…,f_<q-1>,g_i},…,g_q}.(1)
Nambu多様体(あるいはNambu-Poisson多様体)はさらに条件{f_1,…,f_<q-1>,・}がベクトル場(一次微分作用素)となることを満たすものである.
昨年度の研究でq次のNambu-Jacobi bracketはq-vector field Q,(q-1)-vector field Pを用いて{・,・}=Q+1∧Pとあらわされること,およびP≠0のときq-1次元葉層構造とそれを保つベクトル場υで記述されることを示し(Q=υ∧Pとなる),三上・水谷の共著「Nambu-Jacobi structures and their foliations」としてまとめたが,本年度はこれを整備し,付随する葉層構造の様子をさらに明らかにして改めて「Foliations assocaited with Nambu-Jacobi structures」にまとめ直した.(その結果はワルシャワにおける研究集会で発表した.)
関連して,Nambu-Poisson多様体に付随するLeibniz algebraでLie algebraになる例を考察し,一般にはそのような例はごく限られたものであることを認識した.実際にLie algebraになる例はR^nのconstant2-vector fields全体があり,これは2次形式fをひとつ与えるごとに∧^2(R^n)にLie algebraの構造が定まるものである.このほかに,Dirac構造のNambu版であるNambu-Dirac構造について考察を行った.

  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] Tadayoshi Mizutani: "On exact Poisson manifolds of dimension 3"to appear in Proceedings of conference "Foliations : Geometry and Dynamics" (Warsaw 2000).

  • [Publications] Masafumi Okumura: "CR submanifold of maximal CR dimension of complex projective space"Bulletin of the Greek Mathematical Society. 44. 31-39 (2000)

  • [Publications] T.Fukui and L.Paunescu: "Modified analytic trivialization for weighted homogeneous function-germs"Journal of the Mathematical Society of Japan. 52. 433-446 (2000)

  • [Publications] T.Fukui and J.Weyman: "Cohen-Maculay properties of Thom-Boardman strata I : Morin's ideal"Proceedings of London Mathematical Society . 80. 257-303 (2000)

  • [Publications] Toshizumi Fukui : "Congruence for real curves in toric surface and Newton Polygons"Proceedings of XI Brazilian topology meetings (ed.by S.Firmo et al.). World Scientific. 148-167 (2000)

  • [Publications] Masayoshi Nagase : "Twistor space and the Seiberg-Witten equation"Saitama Mathematical Journal. 16. 39-60 (2000)

URL: 

Published: 2002-04-03   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi