• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

The twistor correspondence between different geometric structures and its application

Research Project

Project/Area Number 11640097
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNumazu National College of Technology

Principal Investigator

MACHIDA Yoshinori  Numazu College of Technology, assistant professor, 教養科, 助教授 (90141895)

Co-Investigator(Kenkyū-buntansha) FUJII Kazuyuki  Yokohama City University, the fealty ofscience, professor, 理学部, 教授 (00128084)
SATO Hajime  Nagoya University, Graduate School of Mathemetic, professor, 大学院・多元数理科学研究科, 教授 (30011612)
KAMADA Hiroyuki  Numazucollege of Technology, Division of Liberal Arts, assistant porfessor, 教養科, 助教授 (00249799)
Project Period (FY) 1999 – 2001
Keywordstwistor theory / pure spinor structure / Language structure / sub-Laplacian / Goursat equation / hypergeometric equation / half-flat pertial connection
Research Abstract

An aspect of the twistor theory is to see a relation between different geometric structures defined by a double fibration.
1. (1) A pure spinor structure has the model space of the orthonormal frame bundle of the unit sphere. Considering the null plane bundle, we can define the twistor space, which has a neutral conformal structure. 1. (2) A Lagrangian structure has the model space of the Lagrangian Grassmann manifold. Considering the null plane bundle, we can define the twistor space, which has a projective contact structure.
2. (1) We consider twistor integral representations of solutions of the sub-Laplacian defined on a space equipped with a contact structure. The twistor space is all the null spaces associated with a Heisenberg group, 2. (2) Restricting Goursat equations to finite type, we consider local equivalence problems in terms of curvatures of normal Cartan connections.
3. (1) We consider flag manifolds of second kind by various double fiberings defined from a vector space equipped with an inner product or a symplectic form. We generalize the system of hypergeometric equations associated with geometric structures. 3. (2) We consider generalized instantons of gauge fields (half-flat partial connections) on non-holonomic systems (non-integrable distributions).

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] Yoshinori Machida: "Twistor integral representations of fundamental solutions of massless field equations"J.Geometry and Physics. 32. 189-210 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshinori Machida: "Twistor integral representations of solutions of the sub-Laplacian"Geometry, Integrability and Quantizations. 159-162 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshinori Machida: "On decompasable Monge-Ampere equations"Labachevskii J.Math.. 3. 185-196 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshinori Machida: "Twistor theory of manifolds with Grassmannian structures"Nagoya Math.J.. 160. 17-102 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshinori Machida: "Twistor integral representations of fundamental solutions of massless fiels equations"J. Geometry and Physics. 32. 189-210 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshinori Machida: "Twistor integral representations of solutions of the sub-Laplacion"Geometry, Integrability and Quantizations. 159-162 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshinori Machida: "On decomposable Monge-Ampere equations"Lobacheosku J. Math. 3. 185-196 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshinori Machida: "Twistor theory of manifolds with Grassmannian structures"Nagoya Math. J.,. 160. 17-102 (2000)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi