• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Complex symplectic manifolds and related topics

Research Project

Project/Area Number 12440006
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionThe University of Tokyo (2001-2002)
Kyoto University (2000)

Principal Investigator

MIYAOKA Yoichi  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (50101077)

Co-Investigator(Kenkyū-buntansha) OGUISO Keiji  The University of Tokyo, Graduate School of Mathematical Sciences, Associate Professor, 大学院・数理科学研究科, 助教授 (40224133)
KAWAMATA Yujiro  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (90126037)
KATSURA Toshiyuki  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (40108444)
NAKAYAMA Noboru  Kyoto University, Research Institute for Mathematical Sciences, Associate Professor, 数理解析研究所, 助教授 (10189079)
MORI Shigefumi  Kyoto University, Research Institute for Mathematical Sciences, Professor, 数理解析研究所, 教授 (00093328)
Project Period (FY) 2000 – 2002
Keywordscomplex symplectic / birational morphism / fiber space structure / projective space / hyperquadrics / Fano 3-folds
Research Abstract

The head investigator studied holomorphic maps from complex symplectic manifolds, in which he obtained a series of fundamental results on numerical characterisations of projective space and smooth hyperquadrics. One of his results asserts that a smooth Fano n-fold X is isomorphic to projective n-space of a hyperquadric if and only if the"length of X"is n + 1 or n, where the length is defined to be the minimum of (C, -Kx), C running through the set of curves on X.
Our new characterisations are strong enough to be applied to complex manifolds, enabling us to prove the following structure theorem on morphisms from complex manifolds :
・ Let Y be a projective complex symplectic manifod of dimension 2n and π : Y → Y^^^ a birational morphism onto a normal variety. Let E denote an arbitrary irreducible component and put B = π(E). Then B is a complex symplectic variety of dimension 2m 【less than or equal】 2n and, for a general point b ∈ B, the inverse image π^<-1>(b) ∩ E is projective space of dimension n + m.
・ Let f : Y → X be a nontrivial fiber space structure on a primitive ; complex symplectic manifold of dimension 2n. If f admits a holomorphic section, then X is projective n-space and the fibers of f are Lagrangian subvarieties.
Another product of his research is a joint work with J. Kollar, S. Mori and H. Takagi, which proved the boundedness of Fano 3-folds with only canonical, singularities.

  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] J.Kollar, Y.Miyaoka, S.Mori, H.Takagi: "Boundedness of canonical Q-Fano 3-folds"Proc. Japan Acad., Ser. A Math. Sci.. 76. 73-77 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Cho, Y.Miyaoka, N.I.Shepherd-Barron: "Characterization of projective space and applications to complex symplectic manifolds"Advanced Stud. in Pure Math.. 35. 1-88 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.van der Geer, T.Katsura: "An invariant for varieties in positive characteristic"Contemp. Math. 300. 131-141 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kawamata: "On a relative version of Fujita's freeness conjecture"Complex Geometry Gottingen. 135-146 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] O.Fujino, S.Mori: "A canonical bundle formula"J. Differ. Geom.. 56. 167-188 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Nakayama: "Global structure of an elliptic fibration"Publ. RIMS. 38. 451-649 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.van der Geer, T.Katsura: "Formal Braver groups and moduli of abelian surfaces"Progr. Math.. 195. 185-202 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Mori: "On a hyperplane theorem of Gurjar"Math. Ann. 319. 533-537 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Nakayama: "Global structure of an elliptic fibration"Publ. RIMS. 38. 451-649 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Oguiso, E.Viehweg: "On the isotriviality of families of elliptic surfaces"J. Algebraic Geom.. 10. 569-598 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Oguiso: "K3 surfaces via almost-primes"Math. Res. Lett. 9. 47-63 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Oguiso: "On the finiteness of fiber-space structures on a Calabi-Yau 3-fold"J. Math. Sci (New York). 106. 3320-3335 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Oguiso: "Seshadri constants for a family of surfaces"Math. Ann. 323. 625-631 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Mori, Y.Miyaoka: "Higher-dimensional Birational Geometry"Math. Soc. of Japan. 295 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] J. Kollar, Y. Miyaoka, S. Mori and H. Takagi: "Boundedness of canonical Q-fano 3-folds"Proc. Japan Acad., Ser. A. Math. Sci. 76. 73-77 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Cho, Y. Miyaoka and N. I. Shepherd-barron: "Characterizations of projective space and applications to complex symplectic manifolds"Advanced Studies in Pure Math. 35. 1-88 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G. van der Geer and T. Katsura: "Formal Braver groups and moduli of abelian surfaces"Progr. Math.. 195. 185-202 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Kawamata: "On a relation version of Fujita's freeness conjecture"Complex Geometry Gottingen, Springer-Verlag. 135-146 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] O. Fujino and S. Mori: "A canonical bundle formula"J. Differential Geom. 56. 167-188 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Nakayama: "Global structure of an elliptic fibration"Publ. RIMS. 38. 451-649 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G. van der Geer and T. Katsura: "An invariant for varieties in positive characteristic"Contemp. Math.. 300. 131-141 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Mori: "On a hyperplane theorem of Gurjar"Math. Ann.. 319. 533-537 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Nakayama: "Local structure of an elliptic fibration"Advances Studies in Pure Math.. 35. 185-195 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Oguiso and E. Viehweg: "On the isotriviality of families of elliptic surfaces"J. Algebraic Geom. 10. 569-598 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. oguiso: "K3 surfaces via almost-primes"Math. Res. Lett.. 9. 47-63 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Oguiso: "On the finiteness of fiber-space structures on a Calabi-Yan 3-fold"J. Math. Sci.(NEW YORK). 106. 3320-3335 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Oguiso: "Seshadri constants in a family of surfaces"Math. Ann.. 323. 625-631 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Mori, Y. Miyaoka: "Higher-dimentional Bitational Geometty"Math. Soc. of Japan. 295 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi