2000 Fiscal Year Annual Research Report
Project/Area Number |
12440024
|
Research Institution | Yokohama National University |
Principal Investigator |
今野 紀雄 横浜国立大学, 工学部, 助教授 (80205575)
|
Co-Investigator(Kenkyū-buntansha) |
平野 載倫 横浜国立大学, 工学研究科, 教授 (80134815)
高野 清治 横浜国立大学, 工学部, 教授 (90018060)
鵜飼 正二 横浜国立大学, 工学部, 教授 (30047170)
斉藤 革子 横浜国立大学, 工学部, 助手 (50175353)
|
Keywords | 無限粒子系 / 相転移現象 / パーコレーション / コンタクトプロセス / 極限定理 / 双対性 |
Research Abstract |
今まで我々は,確率的な相互作用をする粒子系,具体的には,コンタクトプロセス,方向性のあるパーコレーション,Domany-Kinzelモデルに対して,その相転移現象を解析するために,様々な相関不等式,或いは相関等式に関する研究を行ってきた.特に最近,Harris-FKG不等式より得られる相関不等式を更に精密化した新しいタイプの相関不等式(BFKL不等式)を得ることが出来た.このことにより従来の様々な手法で得られていた,上記プロセスの生存確率やそれに対する臨界値が,系統的に且つある場合には容易に得られることが可能となった. 上記の研究対象であった,コンタクトプロセスや方向性のあるパーコレーションは,吸収的という性質を満たしている.一般に,吸収的なモデルに対する相関不等式は幾つか知られているが,そうではない非吸収的なモデルに対する相関不等式を発見することが,本研究の課題の一つであった.実際に非吸収的なDKモデルに関して,Harris-FKG不等式が成立するかどうかについて,モンテカルロ・シミュレーションを行った結果,成立することが示唆された.さらに,特別な場合には証明することに成功した.一方,BFKL不等式の成立に関してはシミュレーションの結果は微妙で,現段階では判断できない. コンタクトプロセスや方向性のあるパーコレーションは,2状態の粒子系という立場から括ることが出来る.このような立場から,多状態の粒子系に対する相関不等式を発見することも本研究の課題とした.実際に,3状態の植生遷移モデルやサイクリック系に対して膨大なシミュレーションを行い,その結果を整理した.今後の課題としては,それに基づき数学的な証明を試みていることである. 離散時間の無限粒子系(Domany-Kinzelモデル)に関しては,双対性と特に非吸収的な場合の極限定理について,興味深い結果を得ることが出来た.
|
Research Products
(4 results)
-
[Publications] Norio Konno: "Lower bounds for critical values of a cancellatine model"Journal of Physics A : Mathematical and General. 33. 319-326 (2000)
-
[Publications] Makoto Katori: "Survival probabilities for discrete-time models in one dimension"Journal of Statistical Physics. 99. 603-612 (2000)
-
[Publications] Makoto Katori: "Extension of the Arrowsmith-Essam formula to the Domany-Kinzel model"Journal of Statistical Physics. 101. 747-774 (2000)
-
[Publications] Norio Konno: "Dualities for discrete-time stochastic models in one dimension"Transactions of Materials Research Society of Japan. 26. (2001)