• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Research on transformation groups from the topological viewpoint and research on related topics

Research Project

Project/Area Number 12640056
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionYamagata University

Principal Investigator

UCHIDA Fuichi  Yamagata Univ. Faculty of Science Professor, 理学部, 教授 (90028126)

Co-Investigator(Kenkyū-buntansha) SAWADA Hideki  Yamagata Univ. Faculty of Science Associate Professor, 理学部, 助教授 (30095856)
II Kiyotaka  Yamagata Univ. Faculty of Science Associate Professor, 理学部, 助教授 (10007180)
KAWAMURA Shinzo  Yamagata Univ. Faculty of Science Professor, 理学部, 教授 (50007176)
UENO Keisuke  Yamagata Univ. Faculty of Science Research Associate, 理学部, 助手 (10250911)
UCHIDA Yoshiaki  Yamagata Univ. Faculty of Science Associate Professor, 理学部, 助教授 (80280890)
Project Period (FY) 2000 – 2002
Keywordstransformation groups / non-compact Lie group / maximal compact subgroup / chaotic dynamical systems / symplectic structure / computational quantity / knot / harmonic maps
Research Abstract

In a previous project, F.Uchida have studied smooth Sp(p, q)-actions on S^<4p+4q-1>, each of which is an extension of the standard Sp(p) × Sp(q) action on S^<4p+4q-1>. This standard action has codimension-one principal orbits with Sp(p - 1) × Sp(q - 1) as the principal isotropy subgroup. Furthermore, the fixed point set of the restricted Sp(p - 1) × Sp(q -1) action is diffeomorphic to the seven-sphere S^7.
In this project, as a main theme, we finished the study on smooth Sp(p, q) -actions on S^<4p+4q-1>. We can show such Sp(p, q)-action on S^<4p+4q-1> is characterized by a pair (φ, f) satisfying certain conditions, where φis a smooth Sp(1, 1)-action on S^7, and f : S^7 →P_1(H) is a smooth function.
The pair (φ, f) was introduced by T.Asoh to consider smooth SL(2, C) -actions on the 3-sphere, and was improved by F.Uchida.
Moreover, we obtain certain results on smooth SL(m, R) × SL(n, R) -actions on the m + n - 1-sphere and on smooth C^* × SO(n, C) -actions on the 2n - 1-sphere.
As related topics, S.Kawamura has obtained a result on chaotic maps on a measure space and behavior of the orbit of a state, K.Ii has obtained a result on the equivalence of two complex structures on the punctured tangent bundle of comlex projective space, H.Sawada has obtained a result on RSA cryptosystems, Y.Uchida has obtained a result on periodic knots with unknotting number one and K.Uene has obtained a result on proper harmonic maps from complex hyperbolic spaces into real hyperbolic spaces.

  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] 内田伏一: "On smooth Sp(p, q)-actions on S^<4p+4q-1>"Osaka J. Math.. 39-2. 293-314 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 内田伏一: "On smooth SL(m, R) X SL(n, R) -actions on S^<m+n-1>"Interdiscip. Inform. Sci.. 18-1. 123-128 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 内田伏一: "On certain SL(2,R) X SL(2,R) actions on S^3"Bull. Yaxnagata Univ. Nat. Sci.. 15-3. 61-77 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 井伊清隆: "A proof of equivalence of two complex structures on the punctured tangent bundle of complex projective space"Bull. Yamagata Univ. Nat. Sci.. 15-2. 13-20 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 河村新蔵: "Chaotic maps on a measure space and the behavior of the orbit of a state"Tokyo Jour. Math.. 24-2. 509-533 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 上野慶介: "Non-existence of proper harmonic maps from complex hyperbolic spaces into real hyperbolic spaces"Tohoku Mathematical Publications. 20. 189-195 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Fuichi Uchida: "On smooth Sp (p, q)-actions on S^<4p+4q-1>"Osaka J. Math.. 39. 293-314 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Fuichi Uchida: "Smooth actions of non-compact semi-simple Lie groups, "Current Trends in Transformation Groups""K-monographs in mathematics. 7( Kluwer Academic Publishers, edited by A.Bak, M.Morimoto and F.Ushitaki). 201-215 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Fuichi Uchida: "On smooth SL(m, R) × SL(n, R) -actions on S^<m+n-1>"Interdiscip. Inform. Sci.. 18. 123-128 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Fuichi Uchida: "On certain SL(2, R) × SL(2, R) -actions on S^3"Bull. Yamagata Univ. Nat. Sci.. 15-3. 61-77 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shinzo Kawamura: "Chaotic maps on a measure space and the behavior of the orbit of a state"Tokyo Jour. Math.. 24-2. 509-533 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kiyotaka Ii: "A proof of the equivalence of two complex structures on the punctured tangent bundle of complex projective space"Bull. Yamagata Univ. Nat. Sci.. 15-2. 13-20 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hideki Sawada: "Groups and RSA cryptosystems"CRYPTOLOGIA. 26. 34-40 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yosiaki Uchida: "Periodic knots with unknotting number one"Knots in Hellas '98 Series on Knots and Everything. 24. 524-529 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Keisuke Ueno: "Non-existence of proper harmonic maps from complex hyperbolic spaces into real hyperbolic spacas"Proceedings of the fifth Pacific Rim Geometry Conference. 20 (Tohuko Mathematical Publications). 189-195 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi