• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

A study of continuous selections for filter spaces

Research Project

Project/Area Number 12640129
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionEhime University

Principal Investigator

NOGURA Tsugunori  Ehime University, Faculty of Sciences, Professor, 理学部, 教授 (00036419)

Co-Investigator(Kenkyū-buntansha) HATTORI Yasunao  Shimane University, Faculty of Sciences and Engineerings, Professor, 理工学部, 教授 (20144553)
FUJITA Hiroshi  Ehime University, Faculty of Sciences, Instructor, 理学部, 助手 (60238582)
SHAKHMATOV Dmitri  Ehime University, Faculty of Sciences, Professor, 理学部, 教授 (90253294)
Project Period (FY) 2000 – 2001
KeywordsHyperspace / Selection / Vietoris topology / Fell Topology
Research Abstract

Let X be a topological space. We denote by 2^X the collection of non-empty closed subsets. The set 2^X with the Vietoris topologyis called hyperspace. A map σ : 2^X → X is called a selection if σ(F) ∈ F for every F ∈ 2^X. We characterize various topological properties which admit continuous selections. It is known that if 2^X admits a continuous selection, then X is hereditarily Baire. Using this fact we have shown:
(1) A countable regular space admits a continuous selection if and only if it is scattered.
Also we have shown:
(2) A Hausdorff space admits a Fell continuous selection if and only if it is topological well-orderable.
Let κ be cardinal and let p be a filter on κ. By κ(p) we denote the space which is discrete at points of κ and a neighborhood base of p is given by the fomular {F ∪ {p} : F ∈ p}. For these type of spaces we have the following results:
(3) If p has a nested base, then κ(p) admits a continuous selection.
(4) A co-countable filter on ω_1 admits a continuous selection but not on ω_2.
(5) Let p_1 be a filter on κ_1 with a nested base and p_2 be a filter on ω. If the sum of κ(p_1) 【symmetry】 ω(p_2) admits a continuous selection, then p_2 is the Frechet filter.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] V.Gutev, T.Nogura: "Selections for Vietoris-like hyperspace topologies"Proceedings of London Mathematical Society. 80. 235-256 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] V.Gutev, T.Nogura: "Vietoris continuous selections and disconnectedness-like properties"Proceedings of the American Mathematical Society. 129. 2809-2815 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] V.Gutev, T.Nogura: "Selections and order-like relations"Applied general topology. 2. 205-218 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Fujii, K.Miyazaki, T.Nogura: "Vietoris continuous selections on scattered spaces"Journal of the Mathematical Society of Japan. (印刷中). (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] V.Gutev, S.Garcia-Ferreira, T.Nogura, others: "Extreme selections for hyperspaces of topological spaces"Topology Appl. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] V. Gutev and T. Nogura: "Selections for Vietoris hyperspace topologies"Proc. London Math Soc.. Vol. 80. 235-256 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] V. Gutev and T. Nogura: "Vietoris continuous selections and disconnectedness-like properties"Proc. Arner. Math. Soc.. Vol. 129. 2809-2815 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] V. Gutev and T. Nogura: "Selections and order-like relations"Applied General Topology. Vol. 2. 205-218 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] V. Gutev, S. Garcia-Ferreira, T. Nogura and others: "Extreme selections for hyperspaces of topological spaces"Topology Appl.. (accepted).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Fujii, K. Miyazaki and T. Nogura: "Vietoris continuous selections on scattered spaces (accepted)"J. Math. Soc. Japan. (accepted). (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17   Modified: 2021-04-07  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi