• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Stochastic analysis on loop space

Research Project

Project/Area Number 12640173
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOsaka University

Principal Investigator

AIDA Shigeki  Osaka University, Graduate school of Engineering Science, Professor, 大学院・基礎工学研究科, 教授 (90222455)

Co-Investigator(Kenkyū-buntansha) SEKINE Jun  Osaka University, Graduate school of Engineering Science, Associate Professor, 大学院・基礎工学研究科, 助教授 (50314399)
NAGAI Hideo  Osaka University, Graduate school of Engineering Science, Professor, 大学院・基礎工学研究科, 教授 (70110848)
Project Period (FY) 2000 – 2002
KeywordsLogarithmic Sobolev inequality / Schrodinger operator / Semiclassical limit / heat kernel / rough path
Research Abstract

(1) We gave an estimate on the gap of spectrum of Schrodinger operators by using weak Poincare inequality. Also we gave an estimate on the distribution function of the ground state by the inequality.
(2) Let H be the space of H^1-paths on a Euclidean space. Consider a Morse function on H which is a sum of the energy of the path and a smooth function on H which can be estended to a smooth function on the space of continuous paths. We defined a Witten Laplacian twisted by the Morse function on a Wiener space and proved that the first order behavior of the lowest eigenvalue under semiclassical limit is determined by the hessian of the Morse function.
(3) Consider a continuous function F on the Cameron-Martin subspace of a classical Wiener space. Assume F can be extended to a continuous function F on the Wiener space. Then if the domain {F > 0} is a connected set, then weak Poincare inequalities hold on {F > 0}. We extend this result to the case where F is a continuous function of Brownian rough paths.
(4) We proved very precise Gaussian estimates on heat kernels on Riemannian manifolds which possess poles under the assumptions that the curvature and the derivatives go to 0 sufficiently fast at infinity.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] S.Aida: "An estimate of the gag of spectrium of Sehrochinger operators which generate hyperbounded semigranps"Journal of Functional Analysis. 185. 474-526 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Aida: "Primer Gaussian lower bounds on heat kernels"Stochastics in Finite and Infinite Dimeneion. 1-28 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Aida: "On a certain semiclassical problem on Wiener spaces"Public atrenr of RIMS. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Aida: "Witten Laplacian on pinned push group and its expected semi classical behavior"Infinite dimensional analysis, Quantum probability and related topics. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Aida: "Semiclassical limit of the honest eigenvalue of a Schidinger operator on a Wiener space"Journal of Functional Analysis. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Aida: "Precise Gaussian estimater of heat kernols on asymptotically plat Riemannism menifolds with poles"Proceedings of the 1st Sino-German Conference on stochastic analysis. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Aida: "An estimate of the gap of spectrum of Schrodinger operators which generate hyperbounded semigroups"Journal of Functional Analysis. 185. 474-526 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Aida: "Precise Gaussian lower bounds on heat kernels"Stochastic in Finite and Infinite dimensions. 1-28 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Aida: "On a certain semiclassical problem on Wiener spaces"Publication of RIMS. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Aida: "Witten Laplacian on pinned path group and its expected semiclassical behavior"IDAQP. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Aida: "Semiclassical limit of the lowest eigenvalue of a Schrodinger operator on a wiener space"Journal of Functional Analysis.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Aida: "Precise Gaussian estimate of heat kernels on asymptotically flat Riemannian manifolds with poles"Proceedings of the first Sino-German conference on stochastic analysis. to appear.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi