• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Integrable geodesic flows and Masloy's quantization condition

Research Project

Project/Area Number 13640054
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionHOKKAIDO UNIVERSITY

Principal Investigator

KIYOHARA Kazuyoshi  Hokkaido Univ., Grad. School of Sci., Assoc. Prof., 大学院・理学研究科, 助教授 (80153245)

Co-Investigator(Kenkyū-buntansha) FURUHATA Hitoshi  Hokkaido Univ., Grad. School of Sci., Lect., 大学院・理学研究科, 講師 (80282036)
ISHIKAWA Goo  Hokkaido Univ., Grad. School of Sci., Assoc. Prof., 大学院・理学研究科, 助教授 (50176161)
IZUMIYA Shuichi  Hokkaido Univ., Grad. School of Sci., Prof., 大学院・理学研究科, 教授 (80127422)
IGARASHI Masayuki  Sci. Univ. of Tokyo, Fac. Ind. Sci. of Tech., Lect., 基礎工学部, 講師 (60256675)
SHIMADA Ichirou  Hokkaido Univ., Grad. School of Sci., Assoc. Prof., 大学院・理学研究科, 助教授 (10235616)
Project Period (FY) 2001 – 2002
KeywordsIntegrable geodesic flow / Integrable system / Periodic geodesic flow / Zoll / Hamiltonian mechanics / Symplectiic geometry / Liouville manifolds / Eillipsoid
Research Abstract

We constructed a continuous family of riemanninan metrics on 2-sphere whose geodesic flows possess first integrals of fiber-degree k, for every k greater than 2. They are the first examples, exect the cases where k=3,4, due to Bolsinov and Fomenko. Moreover, the constructed manifolds have the property that every geodesic is closed. Therefore they are conrete examples of the manifolds that Guillemin showed their existence in an abstract manner.
We also investigated the structures of Kahler-Liouville manifolds of general type, I.e., not necessarlly of type (A). As a consequence, we showed that every compact, proper Kahler-Liouville manifold has a bundle structure such that the fiber is a Kahler-Liouville manifold whose geodesic flow is integrable, and the base is (locally) a product of one-dimensional Kahler manifolds. Also, we obtain another class, called of type (B), of Kahler-Liouville manifolds whose geodesic flows are integrable. This class had already appeared in the study of fiber bundle structure of type (A) manifolds, but we now obtained its intrinsic definition.
Also, we investigated local structures of Hermite-Liouville manifolds and basically clarifled them. Moreover, we construct the structure of Hermite-Liouville manifolds on complex projective spaces. The way of construction is similar to that of a Kahler-Liouvlle manifold, I.e., a complexification of a real Liouville manifold. However, in the Hermite case, plural Liouville manifolds produce one Hermite-Liouville manifold. Therefore, we obtain quite many examples of integrable geodesic flows in this way.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] I.Shimada: "On Zariski-van Kampen theorem"Canad. J. Math.. (in press).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kiyohara: "On Kahler-Liouville manifolds"Contemp. Math.. 308. 211-222 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Yamaguchi: "Geometry of higher order differential equations of finite type associated with symmetric spaces"Adv. Studies in Pure Math.. 37. 397-458 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Izumiya: "Singularities of ruled surfaces in R^3"Math. Proc. Camb. Phil. Soc.. 130. 1-11 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.Ishikawa: "Solution surfaces of the Monge-Ampere equation"Diff. Geom. Appl.. 14. 113-124 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kiyohara: "Two-dimensional geodesic flows having first integrals of higher degree"Math. Annalen. 320. 487-505 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K. Kiyohara: "On Kahler-Liouville manifolds"Contemp. Math.. 308. 211-222 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Yamaguchi: "Geometry of higher order differential equations associated with symmetric spaces"Adv. St. Pure Math.. 37. 397-485 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Izumiya: "Singularities of ruled surfaces in R^3"Math. Proc. Camb. Phil. Soc.. 100. 1-11 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G. Ishikawa: "Solution surfaces of the Monge-Ampere equation"Diff, Geom. Appl.. 14. 113-124 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Kiyohara: "Two-dimensional geodesic flows having first integrals of higher degree"Math. Ann.. 320. 487-505 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I. Shimada: "Canad. J. Math., (in press)"On Zariski-van Kampem Theorem.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi