• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Microlocal filtering with multiwavelet frames

Research Project

Project/Area Number 13640171
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOsaka Kyoiku University

Principal Investigator

ASHINO Ryuichi  Faculty of Education, Associate Professor, 教育学部, 助教授 (80249490)

Co-Investigator(Kenkyū-buntansha) MORIMOTO Akira  Faculty of Education, Assistant, 教育学部, 助手 (50239688)
CHODA Hisashi  Faculty of Education, Professor, 教育学部, 教授 (00030338)
TANUMA Kazumi  Gumma University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (60217156)
TAKEUCHI Jiro  Science University of Tokyo, Faculty of Industrial Science and Technology, 基礎工学部, 教授 (80082402)
NAGASE Michihiro  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (70034733)
Project Period (FY) 2001 – 2002
Keywordsmicrolocal analysis / wavelet frame / multiwavelet / filter / time frequency analysis / wavelet analysis / image processing
Research Abstract

Our orthonormal multiwavelet bases, which can decompose functions in the Hilbert space L^2(R^n) microlocally, are shown to be a "stepwise" unconditional basis in L^p(R^n) (1<p<∞) and other related spaces. As part of the proof, an elementary proof of the L^p(R^n) version of the sampling theorem with unconditional convergence is given. Finally, an application is given to the expression of some distributions as sums of boundary values of holomorphic functions.
Orthogonal multiwavelets, whose Fourier transforms consist of characteristic functions of squares or sectors of annuli, are constructed in the Fourier domain and are shown to satisfy a multiresolution analysis with several choices of scaling functions. Redundant smooth tight wavelet frames are obtained and these nonorthogonal frame wavelets can be generated by two-scale equations from, a multiresolution analysis. Singularities can be localized in position and direction and the original images can be restored from the scarred images.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] R.ASHINO (共著): "Smooth tight frame wavelets and image microlocal analysis in Fourier domain"Computers Math.Applic.. (to appear.). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.ASHINO (共著): "Wavelet bases for microlocal filtering and the sampling theorem in L_p(R^n)"Applicable Anal.. 82. 1-24 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.ASHINO (共著): "Microlocal analysis, smooth frames and denoising in Fourier space"Asian Information-Science-Life. 1. 153-160 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.ASHINO (共著): "Multiwavelets, pseudodifferential operators and microlocal analysis"AMS/IP Stud.Adv.Math.. 25. 9-20 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.ASHINO (共著): "Microlocal filtering with rnultiwavelets"Computers Math.Applic.. 41. 111-133 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.ASHINO (共著): "Microlocal analysis and multiwavelets"Geometry, Analysis and Applications (Varanasi, 2000). 293-302 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 榊原 進, 萬代 武史, 芦野 隆一: "ウェーヴレットと直交関数系(翻訳)"東京電機大学出版局. 308 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R. Ashino, S. J. Desjardins, C. Heil, M. Nagase, R. Vaillancourt: "Smooth tight frame wavelets and image microlocal analysis in Fourier domain"Computers Math. Applies.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R. Ashino, T. Mandai: "Wavelet bases for microloeal filtering and the sampling theorem in L_p(R^n)"Applicable Anal.. 82. 1-24 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R. Ashino, S. J. Desjardins, C. Heil, M. Nagase, R. Vaillancourt: "Microlocal analysis, smooth frames and denoising in Fourier space"Asian Information-Science-Life. 1. 153-160 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R. Ashino, C. Heil, M. Nagase, R. Vaillancourt: "Multi-wavelets, pseudodifferential operators and microlocal analysis"AMS/IP Stud. Adv. Math.. 25. 9-20 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R. Ashino, C. Heil, M. Nagase, R. Vaillancourt: "Microlocal analysis and multiwavelets"Geometry, analysis and applications (Varanasi, 2000), World Sci. Publishing. 293-302. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R. Ashino, C. Heil, M. Nagase, R. VaiUancourt: "Microlocal filtering with multiwavdets"Computers Math. Applic.. 41. 111-133 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Sakakibara, T. Mandai, R. Ashino: "Wavelets and other orthogonal systems, (translation into Japanese)"Tokyo Denkidai University Press. 308 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14   Modified: 2021-08-20  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi