• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Research on a localized stable homotopy category

Research Project

Project/Area Number 14540083
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKOCHI UNIVERSITY

Principal Investigator

SHIMOMURA Katsumi  Kochi University, Faculty of Science, Professor, 理学部, 教授 (30206247)

Co-Investigator(Kenkyū-buntansha) YAGITA Nobuaki  Ibaraki University Faculty of Education, Professor, 教育学部, 教授 (20130768)
KOMATSU kazushi  Kochi University, Faculty of Science, Associate Professor, 理学部, 助教授 (00253336)
HEMM Yutaka  Kochi University, Faculty of Science, Professor, 理学部, 教授 (70181477)
NAKAI Hirofumi  Oshima National College of Maritime Technology, Lecturer, 講師 (80343739)
OHKAWA Tetsusuke  Hiroshima Institute of Technology, Associate Professor, 工学部, 助教授 (60116548)
Project Period (FY) 2002 – 2003
Keywordsstable homotopy groups / spheres / Bousfield localization / spectra / Johnson-Wilson spectrum / Picard group / finite complexes / Adams-Novikov spectral sequence
Research Abstract

In this research, we aimed to understand the stable homotopy category L_n, localized with respect to the Johnson-Wilson spectrum E(n)(in a sense of Bousfield). As a way of understanding it, we study a geometric properties of spaces in the unstable homotopy category, which is a base of the stable homotopy category, and study properties of cohomologies of groups. We also have a little more direct way of understanding L_n, in other words, the determination of the homotopy groups π_*(L_nS^O) of the sphere L_nS^O of the category L_n4 and the determination of the Picard group Pic(L_n). For the viewpoint of unstable homotopy theory, we have Hemmi's results, which showed how much we can say about the associativity of a finite complex with H-structure, by observing the cohomology classes after embedding it to relevant loop spaces. Komatsu studied a condition on dimensions of immersions of a. real projective space by observing the bundle structure on the space. Ohkawa studied the stable homotopy category from the viewpoint of the Bousfield classes. For the viewpoint of cohomologies of groups, Yagita investigated the realization map from a motivic cohomology to an ordinary cohomology on a compact group by using the Milnor operations. On stable homotopy groups, Nakai determined the E_2-term, which will be a base of a future computation, of the Adams-Novikov spectral sequence converging to homotopy groups of a spectrum relating to the spheres. For the homotopy groups of spheres, they are known for n<2 and n=2 and p> 3.Shimomura determined the homotopy groups and the Adams-Novikov E_2-term in the cases where n= 2 and p=3 and where n= and p=2, respectively. On the Picard group, we showed a relation between the E_r-terms of the E(n)-based Adams spectral sequence converging to π_*(L_nS^O) and the Picard group Pic(L_n), and gave an example of an element of Pic(L_n), that is not the sphere, in the case where n=2 and p=3.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] K.Shimomura, X.Wang: "The homotopy groups π_*(L_2S^0) at the prime 3"Topology. 41. 1183-1198 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Shimomura, X.Wang: "The Adams-Novikov E_2-term for π_*(L_2S^0) at the prime 2"Math.Z.. 241. 271-311 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kamiya, K.Shimomura: "A relation between the Picard groups of the E(n)-local homotopy category and E(n)-based Adams spectral sequence"Contemp.Math.. 346(印刷中). (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Hemmi: "H-spaces as direct product factors of loop spaces"Topology Appl.. 132. 37-47 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Yagita: "Examples for the mod p motivic cohomology of classifying spaces"Trans.Amer.Math.Soc.. 355. 4427-4450 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakai, D.C.Ravenel: "The first cohomology group of the generalized Morava stabilizer algebra"Proc.Amer.Math.Soc.. 131. 1629-1639 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] SHIMOMURA, Katsumi, WANG, Xiangjun: "The homotopy groups π_*(L_2S^O) at the prime 3"Topology. Vol.41. 1183-1198 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] SHIMOMURA, Katsumi, WANG, Xiangjun: "The Adams-Novikov E_2-term for π_*(L_2S^O) at the prime 2"Math.Z., Vol.. Vol.241. 271-311 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] KAMIYA, Yousuke, SHIMOMURA, Katsumi: "A relation between the Picard groups of the E(n)-local homotopy category and E(n)-based Adams spectral sequence"Contemp.Math.. Vol.346(in press). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] HEMMI, Yutaka: "H-spaces as direct product factors of loop spaces"Topology Appl.. Vol.132. 37-47 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] YAGITA, Nobuaki: "Examples for the mod p motivic cohomology of classifying spaces"Trans.Amer.Math.Soc.. Vol.355. 4427-4450 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] NAKAI, Hirofumi, RAVENEL, Douglas C.: "The first cohomology group of the generalized Morava stabilizer algebra"Proc.Amer.Math.Soc.. Vol.131. 1629-1639 (2003)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi