• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

On the scattering theory and the singular perturbations for the self-adjoint operators

Research Project

Project/Area Number 14540183
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionGakushuin University

Principal Investigator

WATANABE Kazuo  Gakushuin Univ., Mathematics, Assistant, 理学部, 助手 (90260851)

Co-Investigator(Kenkyū-buntansha) MIZUTANI Akira  Gakushuin Univ., Mathematics, Professor, 理学部, 教授 (80011716)
FUJIWARA Daisuke  Gakushuin Univ., Mathematics, Professor, 理学部, 教授 (10011561)
KURODA S.t.  Gakushuin Univ., Mathematics, Professor, 理学部, 教授 (20011463)
KADOWAKI Mitsuteru  Ehime Univ., Fac. Engineering, Assoc. Professor, 工学部, 助教授 (70300548)
SHIMOMURA Akihiro  Gakushuin Univ., Mathematics, Assistant, 理学部, 助手 (00365066)
Project Period (FY) 2002 – 2003
KeywordsMaxwell / Shrodinger / Self-adjoint / Navier-Stokes / Singular Perturbation / Besov space / Bi-harmonic / Dissipative
Research Abstract

1. The H-2-construction to treat the singular perturbation for the self-adjoint operator by the operator theoretical method has been studied by K. Watanabe. The author obtains some results for the operator, for example, necessary and sufficient condition of the existence of embedded eigenvalues, representation of the scattering matrix and etc.
2. The regularity of the solutions for the Maxwell, Stokes and Navier-Stokes equation with the interface has been investigated by K. Watanabe. Especially the following results is remarkable : if the tangential component does not have the singularity, then the regularity of the solution gains rank one.
3. The partial differential equation with the dissipative term has been studied by K. Watanabe. The relationship of this spectrum type and the behavior of the time decay of the solutions has been studied.
4. Krein's formula (which is a generalization of the second resolvent equation) was studied by S.T. Kuroda and published
5. The finite elements method for the bi-harmonic Dirichlet problems on the polygon in the plane (not necessary convex) has been studied by A. Mizutani.
6. The behaviors of the solution at the time infinity for the system of the nonlineat partial differential equations (for example, the coupled Schrodinger and Klein-Goldon) have been studied by A. Shimura and published.
7. The regularity and the uniqueness for the initial date problems of the Euler equation have been studied by T. Ogawa and published.
8. The scattering theory for the dissipative system has been studied by M. Kadowaki and published.

  • Research Products

    (58 results)

All Other

All Publications (58 results)

  • [Publications] T.Kobayashi, T.Suzuki, K.Watanabe: "Interface regularity for the Maxwel and Stokes systems"Osaka J.Math. 40. 925-943 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Watanabe: "On the embedded eigenvalues for the self-adjoint operators with singular perturbations"Tokyo Journal of Mathematics. 25. 323-334 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Watanabe: "Smooth perturbations of the self-adjoint operators defined by the Η_2-construction"Mathematicshe Nachrichten. 250. 104-114 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] P.Kurasov, S.T.Kuroda: "Krein's formula and perturbation theory"J.Operator Theory. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Shimomura: "Modified wave operators for the coupled Wave-Schrodinger equations in three space dimensions"Discrete Contin.Dyn.Syst.. 9. 1571-1586 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Shimomura: "Modified wave operators for Maxwell-Schrodinger equations in three space dimensions"Ann.Henri Pincare. 4. 661-683 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.SHimomura: "Wave operators for the coupled Klein-Gordon-Schrodinger equations in two space dimensions"Funkcial.Ekvac.. 47. (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Shimomura, S.Tonegawa: "Long range scattering for nonlinear Schrodinger equations in one and two space dimensions"Differential Integral Equations. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Shimomura: "Scattering theory for the coupled Klein-Gordon-Schrodinger equation in two space dimensions"J.Math.Sci.Univ.Tokyo. 10. 661-685 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Nakamura, A.Shimomura: "Local well-posedness and smoothing effects of strong solutions for nonlinear Schrodinger equations with potentials and magnetic fields"Hokkaido Math.J. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Shimomura: "Scattering theory for Zakharov equations in three space dimensions with large data"Commun.Contemp Math.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Shimomura: "Scattering theory for the coupled Klein-Gordon-Schrodinger equations in two space dimensions II"Hokkaido Math.J.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Tanaka: "A remark on the derivative of the one-dimensional Hardy-Littlewood Maximal function"Bull.Austral.Math.Soc.. 65. 253-258 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Tanaka: "The Fefferman-Stein-Type inequality for the Kakeya maximal operator II"Acta Math.Sinica. 18. 447-454 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kozono, T.Ogawa, Y.Taniuchi: "The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations."Math.Z.. 242. 251-278 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] E.Kaikina, K.Kato, P.Naumkin, T.Ogawa: "Wellposedness and analytic smoothing effect for the Benjamin-Ono equations"Publ.Res.Inst.Math.Sci.. 38. 651-691 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ogawa, Y.Taniuchi: "A note on blow-up criterion to the 3-D Euler Equations in a bounded domain"J.Math.Fluid.Mech.. 5. 17-23 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ogawa, Y.Taniuchi: "On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain"J.Differential Equations. (in press). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kurokiba, T.Ogawa: "Finite time blow-up of the solution for the nonlinear parabolic equation of the drift diffusion type"Diff.Integral Equations. 16. 427-452 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ogawa: "Analytic smoothing effect forthe Benjamin- Ono equation"in "Toshio Kato's Method and Principle for Evolution Equations in Mathematical Physics" H.Fujita, S.T.Kuroda, H.Okamoto Eds.. 113-126 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Goto, K.Ishii, T.Ogawa: "Approximation Scheme of the Mean Curvature Flow by the Bence-Merriman-Osher algorithm"京都大学数理研講究録. 1234. 145-156 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ogawa: "Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow"SIAM J.Math.Anal. 34. 1318-1330 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kozono, T.Ogawa, Y.Taniuchi: "Navier-Stokes equations in the Besov space near L and BMO"Kyushu J.Math.. 57. 303-324 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ogawa, Y.Taniuchi: "The limiting uniqueness criterion by vorticity to Navier-Stokes equations in Besov spaces"Tohoku Math.J.. 56. 65-77 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ogawa, T.Yokota: "Uniquenss and inviscid limit to the complex Ginzburg-Landauequation in two dimensional general domain"Comm.Math.Phys.. 245. 105-121 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Adachi: "On spectral and scattering theory for N-body Schrodinger operators in a constant magnetic field"Rev.Math.Phys.. 14. 199-240 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kadowaki: "Low and high energy resolvent estimates for wave propagation in stratified media and their applications"J.Diff.Eq. 179. 246-277 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kadowaki: "Resolvent estimates and scattering states for dissipative systems"Publ.Res.Inst.Math.Sci. 38. 191-209 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 黒田成俊: "微分積分"共立出版. 436 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kobayashi, T.Suzuki, K.Watanabe: "Interface regularity for the Maxwell and Stokes systems"Osaka J.Math. vol.40. 925-943 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Watanabe: "On the embedded eigenvalues for the self-adjoint operators with singular perturbations"Tokyo Journal of Mathematics. vol.25. 323-334 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Watanabe: "Smooth perturbations of the self-adjoint operators defined by the H-2-construction"Mathematicshe Nachrichten. vol.250. 104-114 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kurasov, S.T.Kuroda: "Krein's formula and perturbation theory"J.Operator Theory. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Shimomura: "Modified wave operators for the coupled Wave-Schrodinger equations in three space dimensions"Discrete Contin.Dyn.Syst.. vol.9. 1571-1586 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Shimomura: "Modified wave operators for Maxwell-Schredinger equations in three space dimensions"Ann.Henri Poincare. vol.4. 661-683 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Shimomura: "Scattering theory for the coupled Klein-Gordon-Schrodinger equations in two space dimensions"J.Math.Sci.Univ.Tokyo.. vol.10. 661-685 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Shimomura: "Wave operators for the coupled Klein-Gordon-Schrodinger equations in two space dimensions"Funkcial.Ekvac.. vol.47. (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Nakamura, A.Shimomura: "Local well-posedness and smoothing effects of strong solutions for nonlinear Schrodinger equations with potentials and magnetic fields"Hokkaido Math.J. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Shimomura: "Scattering theory for Zakharov equations in three space dimensions with large data"Commun.ContemMath.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Shimomura, S.Tonegawa: "Long range scattering for nonlinear Schrodinger equations in one and two space dimensions"Differential Integral Equations. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Shimomura: "Scattering theory for the coupled Klein-Gordon-Schrodinger equations in two space dimensions II"Hokkaido Math.J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Tanaka: "A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function"Bull.Austral.Math.Soc.. vol.65. 253-258 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Tanaka: "The Fefferman-Stein-Type inequality for the Kakeya maximal operator II"Acta Math.Sinica. vol.18. 447-454 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kozono, T.Ogawa, Y.Taniuchi: "The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations."Math.Z.. vol.242 no.1. 251-278 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] E.Kaikina, K.Kato, Naumkin, T.Ogawa: "Wellposedness and analytic smoothing effect for the Benjamin-Ono equations"Publ.Res.Inst.Math.Sci.. vol.38 no.3. 651-691 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ogawa: "Analytic smoothing effect for the Benjamin-Ono equation"Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics (H.Fujita, S.T.Kuroda, H.Okamoto Eds.) (Yurinsha, Tokyo). 113-126 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Goto, K.Ishii, T.Ogawa: "Approximation Scheme of the Mean Curvature Flow by the Bence-Merriman-Osher algorithm"Surikennkoukyuroku(RIMS). vol.1234. 145-156 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ogawa: "Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow"SIAM J.Math.Anal.. vol.34. 1318-1330 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ogawa, Y.Taniuchi: "On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain."J.Differential Equations. vol.190. 39-63 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kurokiba, T.Ogawa: "Finite time blow-up of the solution for the nonlinearparabolic equation of the drift diffusion type"Diff.Integral Equations. vol.16. 427-452 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Kozono, T.Ogawa, Y.Taniuchi: "Navier-Stokes equations in the Besov space near L and BMO"Kyushu J.Math.. vol.57. 303-324 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ogawa, Y.Taniuchi: "The limiting uniqueness criterion by vorticity to Navier-Stokes equations in Besov spaces"Tohoku Math.J.. vol.56 no.1. 65-77 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ogawa, Y.Taniuchi: "A note on blow-up criterion to the 3-D Euler Equations in a bounded domain"J.Math.Fluid Mech.. vol.5. 17-23 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ogawa, T.Yokota: "Uniquness and inviscid limit to the complex Ginzburg-Landau equation in two dimensional general domain"Comm.Math.Phys.. vol.245 no.1. 105-121 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kadowaki: "Low and high energy resolvent estimates for wage propagation in stratified media and their applications"J.Diff.Eq.. vol.179. 246-277 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kadowaki: "Resolvent estimates and scattering states for dissipative systems"Publ.Res.Inst.Math.Sci.. vol.38. 191-209 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Adachi: "On spectral and scattering theory for N-body Schrodinger operators in a constant magnetic field"Rev.Math.Phys.. vol.14. 199-240 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.T.Kuroda: "Bibunn Sekibunn (Calculus)"Kyouritu Shuppan. 436 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi