• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Studies on a new class of hyperbolic systems

Research Project

Project/Area Number 15340044
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOsaka University

Principal Investigator

NISHITANI Tatsuo  Osaka University, Graduate School of Science, Professor, 理学研究科, 教授 (80127117)

Co-Investigator(Kenkyū-buntansha) HAYASHI Nakao  Osaka University, Graduate School of Science, Professor, 理学研究科, 教授 (30173016)
DOI Shinichi  Osaka University, Graduate School of Science, Professor, 理学研究科, 教授 (00243006)
SUGIMOTO Mitsuru  Osaka University, Graduate School of Science, Associate Professor, 理学研究科, 助教授 (60196756)
MATSUMURA Akitaka  Osaka University, Infirmation Science and Technology, Professor, 情報科学研究科, 教授 (60115938)
OKAJI Takashi  Kyoto University, Graduate School of Science, Associate Professor, 大学院理学研究科, 助教授 (20160426)
Project Period (FY) 2003 – 2006
Keywordsdouble characteristic / null bicharacteristic / Gevrey space / well posedness / hyperbolic operator / initial value problem / elementary decomposition / Hamilton map
Research Abstract

We have obtained a definitive result about the classification of hyperbolic double characteristics.
A hyperbolic double characteristic is called non effectively hyperbolic characteristic if the Hamilton map at the reference point admits only pure imaginary eigenvalues. A remaining fundamental question was whether the Cauchy problem around non effectively hyperbolic characteristic is C-infty well-posed?
We classify hyperbolic double characteristics whether the behavior of null bicharacteristics around the reference double characteristic is stable with respect to the doubly characteristic manifold, that is whether there exists a null bicharacteristic with a limit point in the doubly characteristic manifold. We have obtained the following results:
If the behavior of null bicharacteristics around the reference double characteristic then the principal symbol is elementary decomposable and the Cauchy problem is C-infty well-posed. On the other hand, if the behavior of null bicharacteristic is unstable then the principal symbol is not elementary decomposable and the Cauchy problem is not C-infty well-posed. We obtained more detailed results. In this unstable case the Cauchy problem is Gevrey 5 well-posed and this index 5 is optimal in the following sense; if there is a null bicharacteristic with a limit point in the doubly characteristic manifold then the Cauchy problem is not Gevrey s well-posed for any s>5.
Based on the above results, we obtained the following result : assume that the codimension of the doubly characteristic manifold is 3 and the all eigenvalues of the Hamilton map remain to be pure imaginary then the Cauchy problem is Gevrey 5 well-posed.

  • Research Products

    (13 results)

All 2007 2006 2004 2003

All Journal Article (12 results) Book (1 results)

  • [Journal Article] Second order hyperbolic operators with coefficients sum of Dowers of functions2007

    • Author(s)
      T.Nishitani, F.Colombini
    • Journal Title

      Osaka J. Math. 44

      Pages: 1-17

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Second order hyperbolic operators with coefficients sum of powers of functions2007

    • Author(s)
      T.Nishitani, F.Colombini
    • Journal Title

      Osaka J.Math. 44

      Pages: 1-17

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Smoothly symmetrizable complex systems and the real reduced dimension2006

    • Author(s)
      T.Nishitani, J.Vaillant
    • Journal Title

      Tsukuba J. Math. 30

      Pages: 259-271

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On the Cauchy problem for $D_t^2-D_xa(t,x)D_x$ in the Gevrey class of order $s>2$2006

    • Author(s)
      T.Nishitani
    • Journal Title

      Comm. P.D.Es. 31

      Pages: 1289-1319

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Non effectively hyperbolic operators and bicharacteristics2006

    • Author(s)
      T.Nishitani
    • Journal Title

      Phase Space Analysis of PDE's(Birkhauser)

      Pages: 217-246

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Smoothly symmetrizable complex systems and the real reduced dimension2006

    • Author(s)
      T.Nishitani, J.Vaillant
    • Journal Title

      Tsukuba J.Math. 30

      Pages: 259-271

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the Cauchy problem for D_t^2- D_xa(t,x)D_x in the Gevrey class of order s>22006

    • Author(s)
      T.Nishitani
    • Journal Title

      Comm.P.D.Es. 31

      Pages: 1289-1319

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Non effectively hyperbolic operators and bicharacteristics2006

    • Author(s)
      T.Nishitani
    • Journal Title

      Phase Space Analysis of PDE's, Birkhauser

      Pages: 217-246

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Non effectively hyperbolic operators, Hamilton map and bicharacteristics2004

    • Author(s)
      T.Nishitani
    • Journal Title

      J. Math. Kyoto Univ. 44

      Pages: 55-98

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] An extension of Glaeser inequality and its applications2004

    • Author(s)
      T.Nishitani, S.Spagnolo
    • Journal Title

      Osaka J. Math. 41

      Pages: 145-157

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Non effectively hyperbolic operators, Hamilton map and bicharacteristics2004

    • Author(s)
      T.Nishitani
    • Journal Title

      J.Math.Kyoto Univ. 44

      Pages: 55-98

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] An extension of Glaeser inequality and its applications2004

    • Author(s)
      T.Nishitani, S.Spagnolo
    • Journal Title

      Osaka J.Math. 41

      Pages: 145-157

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] Hyperbolic Problems and Related Topics2003

    • Author(s)
      T.Nishitani, F.Colombini
    • Total Pages
      436
    • Publisher
      International Press
    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi