• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Topological studies on Riemann surfaces through Lie bialgebras

Research Project

  • PDF
Project/Area Number 15H03617
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionThe University of Tokyo

Principal Investigator

Kawazumi Nariya  東京大学, 大学院数理科学研究科, 准教授 (30214646)

Co-Investigator(Renkei-kenkyūsha) TADOKORO Yuuki  木更津工業高等専門学校, 基礎学系, 准教授 (10435414)
SATOH Takao  東京理科大学, 理学部第二部, 准教授 (70533256)
SATO Masatoshi  東京電機大学, 未来科学部, 准教授 (10632010)
KUNO Yusuke  津田塾大学, 学芸学部, 准教授 (80632760)
Research Collaborator Penner Robert  フランス高等科学研究所, 特任教授
KURIBAYASHI Katsuhiko  信州大学, 学術研究院理学系, 教授
NAITO Takahito  日本学術振興会, 特別研究員(PD)
Alekseev Anton  ジュネーブ大学, 数学セクション, 教授
Naef Florian  マサチューセッツ工科大学, 特任研究員
Project Period (FY) 2015-04-01 – 2018-03-31
Keywordsトポロジー / リーマン面 / ゴールドマン・トゥラエフ・リー双代数 / 柏原ヴェルニュ問題 / ゴールドマン括弧積 / フレーミング / 写像類群 / ジョンソン準同型
Outline of Final Research Achievements

For any compact connected oriented surface, we formulated a Kashiwara-Vergne problem associated with a fixed marking of the fundamental group and a fixed framing of the tangent bundle, and proved that the framed Turaev cobracket has a formal description. In particular, the constraint of the Johnson image coming from the framed Turaev cobracket equals that of the Enomoto-Satoh trace. On the other hand, any group-like expansion inducing the formal description of the Goldman bracket is conjugate to a special/symplectic expansion. These results are joint works with A. Alekseev, F. Naef, a collaborator Y.Kuno and the principal investigator N. Kawazumi.

Free Research Field

位相幾何学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi