2018 Fiscal Year Final Research Report
A basic research to develop a system that detects mental and physical donditions by human expressions analysis
Project/Area Number |
15K00375
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Kansei informatics
|
Research Institution | Nippon Bunri University |
Principal Investigator |
|
Research Collaborator |
IWAKOSHI Kazuki
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | 癒し工学 / Deep learning / 北岡式表情評価法 / 認知症 / 自動車事故 / 機械学習 / 癒し刺激 |
Outline of Final Research Achievements |
These days,there are many accidents caused by people are mentallyandphysically exhausted.Especially,there is no end to car accidents by the aged with reduced cognitive function and children are victimized.In order to prevent many tragic accidents and ensure a safe society, we conducted the basic research to develop a system that detects mental and physical conditions.by analyzing human facial expressions.We analyzed facial expressions of senior drivers both with normal and cognitive function and with reduced when driving,andlearneddeeDeeplearning and we constracted the networks that could be identified whether cognitive functions were reduced or normal based on facial expessions.As a result of the subject experiment, the prediction was 55 percent.
|
Free Research Field |
総合領域
|
Academic Significance and Societal Importance of the Research Achievements |
癒し工学は工学と癒しを融合させた研究自体世界初である。学際的研究であるため様々な分野との共同研究があり、その1つが認知症専門医との早期発見システム構築であり、また自動車会社との協力で、認知機能低下したドライバーの早期発見と早期治療に役立つためのサポートであり、学術的には意義がある。 日本は高齢化社会を迎え、今後なお一層認知機能低下がみられる高齢者の増加が予測されている。現在でも多発している自動車事故に対し、メーカや国の対策とは違った視点での本研究は、安全な社会を構築する上で社会的意義がある。
|