• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Developing a hybrid screening method based on machine learning with Ligand database

Research Project

  • PDF
Project/Area Number 15K00408
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Life / Health / Medical informatics
Research InstitutionTokyo University of Science

Principal Investigator

Hayato Ohwada  東京理科大学, 理工学部経営工学科, 教授 (30203954)

Co-Investigator(Kenkyū-buntansha) 青木 伸  東京理科大学, 薬学部生命創薬科学科, 教授 (00222472)
西山 裕之  東京理科大学, 理工学部経営工学科, 教授 (80328567)
Project Period (FY) 2015-04-01 – 2018-03-31
Keywords機械学習 / 化合物スクリーニング / リガンドデータベース
Outline of Final Research Achievements

This research focuses on a hybrid machine learning method to predict chemical properties of drug candidates using ligand databases. In-silico screening is a promising selection method for drug discovery, we have combined support vector machines with inductive logic programming, yieding a new method for improving the predictive accuracy for drug candidate selection. Moreover, p53 targeting radio protective compounds are predicted to decrease the side effect of radio based therapy. The outcomes are presented at a journal and international conference proceedings.

Free Research Field

知能情報学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi