• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Modular representations of algebraic groups

Research Project

  • PDF
Project/Area Number 15K04789
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOsaka City University

Principal Investigator

KANEDA masaharu  大阪市立大学, 大学院理学研究科, 教授 (60204575)

Research Collaborator TANISAKI TOSHIYUKI  
YAGITA NOBUAKI  
TEZUKA MICHISHIGE  
FURUSAWA MASAAKI  
KIMURA YOSHIYUKI  
KAWATA SHIGETO  
Project Period (FY) 2015-04-01 – 2019-03-31
Keywordsalgebraic groups / Frobenius morphism / representation theory
Outline of Final Research Achievements

Let G denote a reductive algebraic group split over a field of characteristic p>0. In joint work with Abe noriyuki we determined for p>>0 the Loewy structure of the G_1T-Verma modules of singular highest weights, G_1 the Frobenius kernel of G and T a maximal torus of G. On the Grassmannian Gr(2,5) and on G/P with G in type G_2 and P a maximal parabolic subgroup of G we verified for p>>0 our conjecture that the the Frobenius direct image of the structure sheaf of G/P contains a Karoubian complete strongly exceptional poset of coherent sheaves. In type G_2 we also found that the Frobenius direct image has a nonzero self-extension, implying that the sheaf of rings of small differential operator on G/P has a non-vanishing 1st cohomology. In joint work with Michel Gros we described a new characterization, thanks to Donkin, of the Frobenius contraction, showing in particular that the Frobenius contraction preserves injectivity and the existence of a good filtration.

Free Research Field

代数学

Academic Significance and Societal Importance of the Research Achievements

上記中,GがG_2型でPのLevi部分群がGのshort simple rootを持つときには,G/Pの構造層のFrobenius direct imageは,我々の予想通りKaroubian complete strongly exceptional posetを持つだけで無く,余分な直既約成分を持ち,そのself-extensionは消えないことを発見した。新たなFrobenius contractionの特徴付けにより,Frobenius contractionがinjectivityやgood filtrationの存在を保つことが分かる。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi