2019 Fiscal Year Final Research Report
Crystal bases for Kirillov-Reshetikhin modules and their combinatorial realization
Project/Area Number |
15K04803
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | University of Tsukuba |
Principal Investigator |
|
Project Period (FY) |
2015-04-01 – 2020-03-31
|
Keywords | 量子アフィン代数 / 結晶基底 / パス模型 / 有限次元既約表現 / Kirilov-Reshetikhin 加群 / Lakshmibai-Seshadri パス / Macdonald 多項式 / 標準単項式理論 |
Outline of Final Research Achievements |
(1) I constructed a quotient module of a Demazure-type submodule in an extremal weight module whose graded character is identical to a specialization of a nonsymmetric Macdonald polynomial. (2) I extended the (classical) standard monomial theory (due to Peter Littelmann) to the case of semi-infinite Lakshmibai-Seshadri paths, and gave the semi-infinite standard monomial theory. As applications, I gave Chevalley-type formulas for graded characters of Demazure-type submodules in extremal weight modules for dominant and antidominant integral weights. (3) I constructed a level-zero van der Kallen module as a quotient of an extremal weight module, and proved that its graded character is identical to a specialization of a nonsymmetric Macdonald polynomial.
|
Free Research Field |
リー代数と量子群の組み合わせ論的表現論
|
Academic Significance and Societal Importance of the Research Achievements |
当研究課題の主な研究対象である Kirilov-Reshetikhin 加群のうち,レベルが1のものについては「レベル・ゼロ基本表現」と呼ばれる(結晶基底を持つ)有限次元表現と一致していることが知られている.また,レベル・ゼロ基本表現のいくつかのテンソル積は量子 Weyl 加群と呼ばれており,エクストリーマル・ウェイト加群の (Demazure 型の部分加群の) 商加群として得られることが知られている.今回の結果は,非対称 Macdonald 多項式の特殊化と,レベル1のKirilov-Reshetikhin 加群を結びつける重要な研究成果である.
|