2018 Fiscal Year Final Research Report
Singularities and derived catetories
Project/Area Number |
15K04819
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Nagoya University (2018) Hiroshima University (2015-2017) |
Principal Investigator |
Ishii Akira 名古屋大学, 多元数理科学研究科, 教授 (10252420)
|
Research Collaborator |
Nakamura Iku
Ueda Kazushi
Álvaro Nolla
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | McKay対応 / モジュライ空間 / ダイマー模型 |
Outline of Final Research Achievements |
(1) We studied some globalisation of the so-called special McKay correspondence for a two-dimensional quotient singularity with Iku Nakamura and obtained a description of it. (2) For a two-dimensional quotient singularity, we characterized those resolutions dominated by the so-called maximal resolution as the moduli spaces of G-constellations. (3) We studied dimer models with group actions with Alvaro Nolla and Kazushi Ueda and constructed non-commutative crepant resolutions of the quotient of an affine topic variety by the symmetry of a lattice polygon.
|
Free Research Field |
代数幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
(1) これまで知られていたことに対し,より深い洞察を与えることができた. (2) これまで違う文脈で出てきた二つの概念を結びつけるとともに,導来圏に関する一般的な予想とよく適合する結果である. (3) 群の作用を考えることで,これまでの結果を一般化するとともに,新しい例の構成に成功した.
|