• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Singularities and derived catetories

Research Project

  • PDF
Project/Area Number 15K04819
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionNagoya University (2018)
Hiroshima University (2015-2017)

Principal Investigator

Ishii Akira  名古屋大学, 多元数理科学研究科, 教授 (10252420)

Research Collaborator Nakamura Iku  
Ueda Kazushi  
Álvaro Nolla  
Project Period (FY) 2015-04-01 – 2019-03-31
KeywordsMcKay対応 / モジュライ空間 / ダイマー模型
Outline of Final Research Achievements

(1) We studied some globalisation of the so-called special McKay correspondence for a two-dimensional quotient singularity with Iku Nakamura and obtained a description of it.
(2) For a two-dimensional quotient singularity, we characterized those resolutions dominated by the so-called maximal resolution as the moduli spaces of G-constellations.
(3) We studied dimer models with group actions with Alvaro Nolla and Kazushi Ueda and constructed non-commutative crepant resolutions of the quotient of an affine topic variety by the symmetry of a lattice polygon.

Free Research Field

代数幾何学

Academic Significance and Societal Importance of the Research Achievements

(1) これまで知られていたことに対し,より深い洞察を与えることができた.
(2) これまで違う文脈で出てきた二つの概念を結びつけるとともに,導来圏に関する一般的な予想とよく適合する結果である.
(3) 群の作用を考えることで,これまでの結果を一般化するとともに,新しい例の構成に成功した.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi