• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Structural analysis of the automorphism group of a polynomial ring and its application

Research Project

  • PDF
Project/Area Number 15K04826
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

Kuroda Shigeru  首都大学東京, 理学研究科, 教授 (70453032)

Research Collaborator Kojima Hideo  新潟大学, 大学院自然科学研究科, 教授 (90332824)
Tanimoto Ryuji  静岡大学, 教育学部, 准教授 (20547062)
Project Period (FY) 2015-04-01 – 2019-03-31
Keywords多項式環 / 自己同型写像 / 安定余順自己同型 / 加法群作用 / ヒルベルトの第14問題
Outline of Final Research Achievements

A polynomial is an indispensable concept in mathematics, and the ring formed by them is a basic object in modern algebra. However, there remain various difficult open problems concerning polynomial rings, which have been studied worldwide. In the study of such problems, automorphisms of a polynomial ring and the ring formed by them play important roles. In this research, we investigated subgroups of the automorphism group of a polynomial ring and related objects, and obtained various new information about them. We also succeeded in constructing a new counterexample to Hilbert's fourteenth problem by using the knowledge of polynomial automorphisms.

Free Research Field

可換環論

Academic Significance and Societal Importance of the Research Achievements

ヒルベルトの基底定理をはじめ,多項式環に関する基本的な結果は,現代代数学において重要な役割を果たしている.多項式環の基本的な性質については未だ不明な点が多く,それらを解明することは,将来的に代数学の発展に多大な貢献をするはずである.多項式環の自己同型や自己同型群は,多項式環を理解するうえで欠かせないものであり,本研究で得られた成果は,今後の多項式環研究で重要な意味を持つと考えられる.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi