2018 Fiscal Year Final Research Report
Structural analysis of the automorphism group of a polynomial ring and its application
Project/Area Number |
15K04826
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Tokyo Metropolitan University |
Principal Investigator |
Kuroda Shigeru 首都大学東京, 理学研究科, 教授 (70453032)
|
Research Collaborator |
Kojima Hideo 新潟大学, 大学院自然科学研究科, 教授 (90332824)
Tanimoto Ryuji 静岡大学, 教育学部, 准教授 (20547062)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | 多項式環 / 自己同型写像 / 安定余順自己同型 / 加法群作用 / ヒルベルトの第14問題 |
Outline of Final Research Achievements |
A polynomial is an indispensable concept in mathematics, and the ring formed by them is a basic object in modern algebra. However, there remain various difficult open problems concerning polynomial rings, which have been studied worldwide. In the study of such problems, automorphisms of a polynomial ring and the ring formed by them play important roles. In this research, we investigated subgroups of the automorphism group of a polynomial ring and related objects, and obtained various new information about them. We also succeeded in constructing a new counterexample to Hilbert's fourteenth problem by using the knowledge of polynomial automorphisms.
|
Free Research Field |
可換環論
|
Academic Significance and Societal Importance of the Research Achievements |
ヒルベルトの基底定理をはじめ,多項式環に関する基本的な結果は,現代代数学において重要な役割を果たしている.多項式環の基本的な性質については未だ不明な点が多く,それらを解明することは,将来的に代数学の発展に多大な貢献をするはずである.多項式環の自己同型や自己同型群は,多項式環を理解するうえで欠かせないものであり,本研究で得られた成果は,今後の多項式環研究で重要な意味を持つと考えられる.
|