2018 Fiscal Year Final Research Report
Schubert calculus in equivariant K-theory
Project/Area Number |
15K04832
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Okayama University of Science |
Principal Investigator |
Ikeda Takeshi 岡山理科大学, 理学部, 教授 (40309539)
|
Co-Investigator(Kenkyū-buntansha) |
成瀬 弘 山梨大学, 大学院総合研究部, 教授 (20172596)
|
Research Collaborator |
Nakasuji Maki
Matsumura Tomoo
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | K理論 / シューベルト類 / グラスマン多様体 |
Outline of Final Research Achievements |
We obtained determinant and Pfaffian(sum) formulae for the Schubert classes in the equivariant K-theory of classical type A,B, and C Grassmannians (with Hudson, Matsumura, Naruse). Related to the GP functions which are identified with the Schubert classes of maximal orthogonal Grassmannians, we introduced a combinatorial notion called set-valued decomposition tableaux, and gave a conjecture on the structure constant, and gave a proof for special case called Piari case (with Cho, Nakasuji). We formulated K-theoretic Peterson isomorphism and proved it (with Iwao, Maeno). In the equivariant quantum cohomology ring, we proved the factorial P- and Q-funsctions represent the Schubert classes (with Mihalcea, Naruse). For the maximal orthogonal Grassmannian, we proved the Pieri rule in the equivariant cohomology (with Cho). Naruse joint with Kirillov introduced a family of functions that are identified with Schubert classes in the equivariant K-theory of the classical flag variety.
|
Free Research Field |
代数学,組合せ論
|
Academic Significance and Societal Importance of the Research Achievements |
等方グラスマン多様体の種々のコホモロジー理論において,シューベルト類の具体的な記述を与えた.特に同変K理論,同変コホモロジー,量子同変コホモロジーなどである.特に,行列式,パッフィアン公式は数10年来の懸案を解決した.構造定数に関してひとつの予想を立てた.これは組合せ論に新しい概念の導入を含む.その予想に対して,部分的,肯定的解決を与えた.また,K理論における量子・アフィン対応を証明した.
|