• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Deformation Space of Hyperbolic Manifolds and Lorentzian Geometry

Research Project

  • PDF
Project/Area Number 15K04841
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionNagoya University

Principal Investigator

ITO kentaro  名古屋大学, 多元数理科学研究科, 准教授 (00324400)

Project Period (FY) 2015-04-01 – 2019-03-31
Keywords双曲幾何 / 擬リーマン幾何
Outline of Final Research Achievements

We study 3-dimensional pseudo-Riemannian space form which have relation with hyperbolic geometry. We start construction of the geometry of SL(2,C). We study fundamental properties of totally geodesic pseudo-Riemannian space form contained in SL(2,C). Especially, we start construction of theory of surfaces in SL(2,C), wich is a generalization of that in pseudo-Riemannian space forms.

Free Research Field

幾何学

Academic Significance and Societal Importance of the Research Achievements

双曲幾何をより広い枠組みで捕らえる試みを行っており,将来的な発展が見込まれる.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi