2019 Fiscal Year Final Research Report
Interface between singularity theory of mappings and knot theory
Project/Area Number |
15K04880
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Seikei University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
渡邉 忠之 島根大学, 学術研究院理工学系, 講師 (70467447)
|
Project Period (FY) |
2015-04-01 – 2020-03-31
|
Keywords | 中次元トポロジー |
Outline of Final Research Achievements |
I have been pursuing a new field of study lying between high dimensional topology and low dimensional topology and between differential topology and algebraic topology. First, I studied the independence among the seven types of roseman moves in surface knot theory and published a joint paper with Dr. Kokoro Tanaka (Tokyo Gakugei University). Second, I studied the behaviour of complex tangents of smooth manifolds embedded in complex space and published two joint papers with Dr. Naohiko Kasuya (Kyoto Sangyo University). In addition, several projects, including a joint project with Dr. Tadayuki Watanabe (Shimane University), are underway.
|
Free Research Field |
位相幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
これまでも「高次元トポロジー vs 低次元トポロジー」、「代数的トポロジー vs 微分トポロジー」、「PL トポロジー vs 微分トポロジー」という具合に分野横断的な研究を行ってきたが、本研究課題における成果はトポロジーをはみ出して複素微分幾何的な領域にまで広がってきた。このことは多様体のトポロジー、幾何学、ひいては数学の他分野への応用の幅を広げることに資する。
|