2017 Fiscal Year Final Research Report
Multiplicity of a space over another space
Project/Area Number |
15K13439
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Geometry
|
Research Institution | Waseda University |
Principal Investigator |
Taniyama Kouki 早稲田大学, 教育・総合科学学術院, 教授 (10247207)
|
Project Period (FY) |
2015-04-01 – 2018-03-31
|
Keywords | 多重度 / 結び目 / 空間グラフ |
Outline of Final Research Achievements |
Let $(X,\cdot)$ be a magma. A map $a:{\mathbb Z}\to X$ is a right-recursive sequence if $a(n)\cdot a(n+1)=a(n+2)$ for every $n\in{\mathbb Z}$. A map $a:{\mathbb Z}\to X$ is a left-recursive sequence if $a(n+2)=a(n+1)\cdot a(n)$ for every $n\in{\mathbb Z}$. When $(X,\cdot)=({\mathbb Z},+)$ a right-recursive sequence is a left-recursive sequence and it is a Fibonacci type sequence defined on ${\mathbb Z}$. We study various right-recursive sequences and left-recursive sequences. We also study various surjective right-recursive sequences and left-recursive sequences.
|
Free Research Field |
幾何学
|