• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

A study on the structure of complexes of modules

Research Project

  • PDF
Project/Area Number 15K17514
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionFukuoka University of Education

Principal Investigator

OKAZAKI Ryota  福岡教育大学, 教育学部, 准教授 (20624109)

Project Period (FY) 2015-04-01 – 2019-03-31
Keywordsアフィン有向マトロイド / 有界複体 / 極小次数付き自由分解
Outline of Final Research Achievements

This research has revealed that if the bounded complex X of an affine oriented matroid M is Cohen-Macaulay, then X and the simplicial complex Δ associated with the affine oriented matroid ideal of M are ``homologically'' closed balls. In addition, I have discovered a ``direct'' way to construct a graded free resolution of a finitely generated graded module over a polynomial ring over a field.

Free Research Field

組合せ論的可換代数

Academic Significance and Societal Importance of the Research Achievements

アフィン有向マトロイドに関する成果は,有界複体 X がコーエン=マコーレーならば X は閉球体であることを窺わせ,X. Dong 氏により肯定的に解決された Zaslavsky 予想の主張がより広いクラスでも成立することを示唆するものである.
加群 M の自由分解は,M の代数的性質を調べる為の重要な概念であり,本研究で得られた自由分解の構成法は多項式環上の次数付き加群に関する研究への寄与が期待できる.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi