2018 Fiscal Year Final Research Report
Quantum invariants of knots and 3-manifolds
Project/Area Number |
15K17539
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Geometry
|
Research Institution | Tokyo Institute of Technology (2018) Kyoto University (2015-2017) |
Principal Investigator |
Suzuki Sakie 東京工業大学, 情報理工学院, 准教授 (40636263)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | Quantum invariants / knots / 3-manifolds |
Outline of Final Research Achievements |
From fiscal 2014 to fiscal 2018, I have studied topological aspects of the universal quantum sl2 invariant for links. J. B. Meilhan and I showed that the image of a certain projection of the universal quantum sl2 invariant is obtained by Milnor invariants. J. B. Meilhan and I also determined the dimensions and the characters, as the modules of the symmetric group, of the image and the kernel of the sl2 homotopy weight system. I gave a reconstruction of the universal quantum sl2 invariant using ideal triangulation of the link complements. This reconstruction gives a new framework to study quantum invariants.
|
Free Research Field |
結び目理論、量子トポロジー
|
Academic Significance and Societal Importance of the Research Achievements |
一般に量子不変量は絡み目図式とR行列を用いて構成される。図式は2次元的な対象であり,3次元の中の絡み目の次元をひとつ落とす。図式とR行列を用いた代数的,組み合わせ的な定義により,量子不変量と絡み目の3次元的な幾何学的性質の関係は明らかではない。Milnor不変量は絡み数を一般化した不変量であり,代数的,組み合わせ的に定義された量子不変量との関係は非自明である。理想単体分割は絡み目の補空間を3次元のまま分割する方法であり,図式を経由した定義とは違う側面から量子不変量を調べる枠組みになる。
|